

THE SESHASAYEE INSTITUTE OF TECHNOLOGY

(AUTONOMOUS)

TIRUCHIRAPPALLI - 620 010. Est. 1952

DEPARTMENT OF PAPER TECHNOLOGY

CONTENTS

SR.NO	PARTICULARS	PAGE NO
-	Preface	
-	Acknowledgements	
1.	Department Vision, Mission PO, and PEOs	
2.	Regulation	G
3.	Salient Features of the Diploma Programme	
4.	Employment opportunities	Z
5.	Competency Profile	
6.	Deriving Curriculum Areas from Competency Profile	
7.	Curriculum Outline	
8.	Scheme of Examination	
9.	Equivalent papers of E Scheme and F Scheme	
10.	Details of Addition and Deletion of subjects	
11.	Horizontal and Vertical Organization of the Subject	
12.	Detailed Contents of various Subjects	

PREFACE

Tech Man Power need is on the increase day by day. The academic students of Diploma in Paper Technology., is made to fit this fast paced result oriented present conditions. This happens due to the implementation of scientific approach, rather than as earlier said "Paper Making is an Art."

Our living planet becomes Global Village and shrinks every second. We made use of the powerful tools such as experience, knowledge and expertise. This modified syllabus is designed to understand easily and clearly. This is the only integrated course in South India.

To suit to the modern trend updated technology is vital to start their career followed by promotions and improvements to the next stage. This syllabus is designed to suite the students in a better way. Polytechnics play a major role to give a gentle start of one's career with technical knowledge in their early teens or prior to the age of twenty.

The success of the course depends on its effective implementation. To fulfill the need of multifaceted newly designed opportunities and jobs the technical qualifications is mandatory. The students are focused to fill these needs.

The crème of this sand-which pattern course is providing two Full semester inplant training in leading Paper mills such as Tamil Nadu Newsprint & Papers Limited., Karur, Seshasayee Paper& Boards Limited, Erode and Emami Paper mills Ltd., Orissa. The students undergoes In Plant training as per the act of apprentiship Training of Government of India.

PRINCIPAL & CHAIRMAN

ACKNOWLEDGEMENTS

We gratefully acknowledge the assistance and guidance received from

- 1. Commissioner, Technical Education and Secretary, Higher education taking keen interest and support in the revision of this curriculum.
- 2. Chairman, Managing Director, Seshasayee Paper & Boards Ltd., Erode.
- 3. General Manager (Paper), Deputy General Manager (Lab & R&D), Tamilnadu Newsprint & Papers Ltd.
- 4. Dr. N.Anantharaman, Dean NIT, Trichy 15.
- 5. Dr. P. Marimuthu, Deputy General Manager Lab & R&D. SPB Ltd. Erode. For his sustained guidance and support in the revision of this curriculum.

Co-ordinator

1. DEPARTMENT VISION, MISSION, PO AND PEOS

The Vision and Mission of the Department

Vision

To produce competitive, responsive, globally competent paper technologists to cater the needs of the industries.

Mission

- Integrate the self sustainable education with basic teaching- learning process with need based curriculum.
- > Inculcate logical thinking, creativity and effective communication skills.
- Cultivate awareness of emerging trends in paper technology field through self learning.
- > To create a sense of social concerns, humanitarian services and ethics.
- > To motivate lifelong learning and creating good resources.

Programme Outcomes (PO's)

After completion of the programme the student should be able to

- 1. Apply the basic knowledge of mathematics, Science, Chemistry and engineering to solve the problems in paper technology.
- 2. Identify and analyse the problems in paper industries and arrive at appropriate solutions.
- 3. Develop and evaluate operations of paper processes.
- 4. Trouble shoot the problems in case of plant operations.
- 5. Use the appropriate technique, skills and modern engineering tools in paper industries.
- 6. Understand the professional, social issues and responsibilities.
- 7. Understand the impact of engineering solutions on environment and global economics.
- 8. Apply principles of ethics in professional practices.
- 9. Function effectively as an individual and in team.
- 10. Communicate effectively to present ideas and thoughts.

- 11. Incorporate appropriate economics and business practices for project, risk and change management.
- 12. Self improvements through continuous lifelong learning to update the knowledge of changes in technology.

Programme Educational Objectives (PEOs)

- 1. Lead a successful career as an employee or an entrepreneur in the field of paper technology and allied fields.
- Adopt the latest changes and developments in the field of paper technology by updating knowledge and skills.
- 3. Exhibit effective communication skills to present his or her ideas and thoughts efficiently.
- 4. Able to work effectively as an individual, in multi disciplines, multicultural environments and society at large.

2. R E G U L A T I O N S

DIPLOMA COURSES IN ENGINEERING (TERM PATTERN) (Implemented from 2020- 2021) F- SCHEME

(Common to all Programmes)

2.1. Description of the Course:

a. Full Time (3 years)

The Programme for the Full Time Diploma in Engineering shall extend over a period of three academic years, consisting of 6 terms* and the First Year is common to all Engineering Branches.

b. Sandwich (31/2 years)

The Course for the Sandwich Diploma in Paper Technology shall extend over a period of three and half academic years, consisting of 7 terms* and the First Year is common to all Engineering Branches. The subjects of three years full time diploma course being regrouped for academic convenience. During 4th and/or during 7th term the students undergo industrial training for six months. Industrial training examination will be conducted after completion of every 6 months of industrial training.

* Each term will have 16 weeks duration of study with 35 hrs. / Week for Regular Diploma Courses.

2.2. Condition for Admission:

Condition for admission to the Diploma courses shall be required to have passed in

The S.S.L.C Examination of the Board of Secondary Education, Tamil Nadu.

(or)

The Anglo Indian High School Examination with eligibility for Higher Secondary Course in Tamil Nadu.

(or)

The Matriculation Examination of Tamil Nadu.

(or)

Any other Examinations recognized as equivalent to the above by the Board of Secondary Education, Tamil Nadu.

Note: In addition, at the time of admission the candidate will have to satisfy certain minimum requirements, which may be prescribed from time to time.

2.3. Admission to Second year (Lateral Entry):

A pass in HSC (academic) or (vocational) courses mentioned in the Higher Secondary Schools in Tamil Nadu affiliated to the Tamil Nadu Higher Secondary Board with eligibility for University Courses of study or equivalent examination & Should have studied the following courses.

A pass in 2 Years ITI with appropriate Trade or Equivalent examination.

		H.Sc Academic	H.Sc Vocatio	onal	
			Subjects Studied		Industrial
SI. No	Courses	Studied any three of the following subjects	Studied any three of the following subjects	Vocational subjects	Training Institutes Courses
1	All the Regular and Sandwich Diploma Courses	 Maths Physics Chemistry Computer Science Electronics Information Technology Biology Informatics Practices Bio Technology Technical Vocational subject Agriculture Engineering Graphics Business Studies Entrepreneurship 	 Maths Physics Chemistry Computer Science Electronics Information Technology Biology Informatics Practices Bio Technology Technical Vocational subject Agriculture Engineering Graphics Business Studies Entrepreneurship 	Related Vocational Subjects Theory& Practical	2 years course to be passed with appropriate Trade

- For the Diploma Programmes related with Engineering/Technology, the related / equivalent courses prescribed along with Practical's may also be taken for arriving the eligibility.
- Programmes will be allotted according to merit through counseling by the Principal as per communal reservation.
- Candidates who have studied Commerce Courses are not eligible for Engineering Diploma Programmes.

2.4. Age Limit:

No Age limit.

2.5. Medium of Instruction: English

2.6. Eligibility for the Award of Diploma:

No candidate shall be eligible for the Diploma unless he/she has undergone the prescribed course of study for a period of not less than 3/3 ½ academic years (Full Time/Sandwich), affiliated to the State Board of Technical Education and Training, Tamil Nadu, when joined in First Year and 2/2 ½ years (Full Time/Sandwich), if joined under Lateral Entry scheme in the second year and passed the prescribed examination.

The minimum and maximum period for completion of Diploma Programmes are given below:

Diploma Programmes	Minimum Period	Maximum Period
Full Time	3 Years	6 Years
Full Time (Lateral Entry)	2 Years	5 Years
Sandwich	3 ¹ / ₂ Years	61/2 Years
Sandwich (Lateral Entry)	2 ¹ / ₂ Years	5½ Years

This will come into effect from F Scheme onwards i.e. from the academic year 2020-2021.

2.7. Programmes of Study and Curriculum outline

The Programmes of study shall be in accordance with the syllabus prescribed from time to time, both in theory and practical courses.

The curriculum outline is given in Annexure – I.

2.8. Examinations:

Autonomous Examinations in all Programmes of all the terms under the scheme of examinations will be conducted at the end of each term.

The internal assessment marks for all the courses will be awarded on the basis of continuous assessment earned during the term concerned. For each course, 25 marks are allotted for internal assessment. Autonomous Examinations are conducted for 100 marks and reduced to 75.

The total marks for result are 75 + 25 = 100 Marks.

2.9. Continuous Internal Assessment:

A. For Theory Courses:

The Internal Assessment marks for a total of 25 marks, which are to be distributed as follows:

i) Course Attendance

(Award of marks for subject attendance to each subject Theory/Practical will be as per the range given below)

80% - 83%	1 Mark
84% - 87%	2 Marks
88% - 91%	3 Marks
92% - 95%	4 Marks
96% - 100%	5 Marks

ii) Test

Two Tests each of 2 hours duration for a total of 50 marks are to be conducted. Average of these two test marks will be taken and the marks to be reduced to:

05 Marks

10 Marks

The Test – III is to be the Model Examination covering all the five units and the marks obtained will be reduced to:

05 Marks

Test	Units	When To Conduct	Marks	Duration
Test I	Unit – I & Half of Unit II	End of 6th week	50	2 Hrs
Test II	Remaining Half of Unit II & III	End of 12th week	50	2 Hrs
Test III	Model Examination: Covering all the 5 Units. (Autonomous Examinations- Question paper- pattern).	End of 16th week	100	3 Hrs

From the Academic Year 2020 – 2021 onwards.

Question Paper Pattern for the Cycle Test :(Test - I & Test- II) :

,

5 Marks

Part A Type questions (Any 4 out of 6 questions) : 4 Questions × 2 mark 08 marks Part B Type questions (Any 4 out of 6 questions) : 4 Questions × 3 mark 12 marks Part C Type questions (Either or) : 3 Questions × 10 mark 30 marks **Total** 50 marks

Assignment

10 Marks

٠	Written Assignment	-	4 marks
•	Multiple Choice Questions	-	3 marks
•	Seminar Presentation	-	3 marks
•	Total	-	10 Marks

iii) Assignment

For each course Two Assignments are to be given each for 10 marks and the average marks scored should be reduced for 4 marks.

iv) Multiple Choice Questions

For each course one MCQ test are to be given each for 30 marks and the average marks scored should be reduced for 3 marks.

v) Seminar Presentation

The students have to select the topics either from their course or general courses which will help to improve their grasping capacity as well as their capacity to express the subject in hand. The students will be allowed to prepare the material for the given topic using the library hour and they will be permitted to present seminar (For First and Second Year, the students will be permitted to present the seminar as a group not exceeding six members and each member of the group should participate in the presentation. For the Third Year, the students should present the seminar individually.) The seminar presentation is mandatory for all theory courses and carries 3 marks for each theory course. The respective course faculty may suggest topics to the students and will evaluate the submitted materials and seminar presentation. (1 ½ marks for the material submitted in writing and 1 ½ marks for the seminar presentation). For each subject minimum of two seminars are to be given and the average marks scored should be reduced to 3 marks.

3 Marks

3 Marks

4 Marks

All Test Papers, Assignment Papers / Notebooks and the seminar presentation written material after getting the signature with date from the students must be kept in safe custody in the department for verification and audit. It should be preserved for one term after publication of Board Exam results and produced to the flying squad and the inspection team at the time of inspection / verification.

B. For Practical Subjects:

The Internal Assessment mark for a total of 25 marks which are to be distributed as follows:-

a) Attendance	: 5 Marks (Award of marks same as theory subjects)
 b) Procedure / observation and Tabulation / Other Practical Related Work c) Record writing TOTAL 	: 10 Marks : 10 Marks : 25 Marks

- All the Experiments/Exercises indicated in the syllabus should be completed and the same to be given for final Board examinations.
- The observation note book / manual should be maintained for 10 marks. The observation note book / manual with sketches, circuits, programme, reading and calculation written by the students manually depends upon the practical subject during practical classes should be evaluated properly during the practical class hours with date.
- The Record work for every completed exercise should be submitted in the subsequent practical classes and marks should be awarded for 10 marks for each exercise as per the above allocation.
- At the end of the term, the average marks of all the exercises should be calculated for 20 marks (including Observation and Record writing) and the marks awarded for attendance is to be added to arrive at the internal assessment mark for Practical. (20+5=25 marks)
- Only regular students, appearing first time have to submit the duly signed bonafide record note book/file during the Practical Board Examinations.

All the marks awarded for Assignments, Tests, Seminar presentation and Attendance should be entered periodically in the Personal Theory Log Book of the staff, who is handling the theory subject.

The marks awarded for Observation, Record work and Attendance should be entered periodically in the Personal Practical Log Book of the staff, who is handling the practical subject.

2.10. Communication Skill Practical, Computer Application Practical and

Physical Education:

The Communication Skill Practical and Computer Application Practical with more emphasis are being introduced in First Year. Much Stress is given to increase the Communication skill and ICT skill of students. As per the recommendation of MHRD and under Fit India scheme, the Physical education is introduced to encourage students to remain healthy and fit by including physical activities and sports.

2.11. Project Work and Internship:

The students of all the Diploma Programme have to do a Project Work as part of the Curriculum and in partial fulfilment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise. The Project work must be reviewed twice in the same term. The project work is approved during the V term by the properly constituted committee with guidelines.

a) Internal assessment mark for Project Work & Internship:

TOTAL	 25 MARKS
Attendance	 05 marks (Award of marks same as theory subject pattern)
Project Review II	 10 marks
Project Review I	 10 marks

Proper record should be maintained for the two Project Reviews and preserved for one term after the publication of Board Exams results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

b) Allocation of Marks for Project Work & Internship in Board Examinations:

Demonstration/Presentation	25 marks
Report	25 marks
Viva Voce	30 marks
Internship Report	20 marks
TOTAL	100* MARKS

*Examination will be conducted for 100 marks and will be converted to 75 marks.

c) Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV / V term during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year "Project Work & Internship" for 20 marks. The internship shall be undertaken in any industry / Government or Private certified agencies which are in social sector / Govt. Skill Centres / Institutions / Schemes.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual student during the Project Work & Internship Board examination.

2.12. Scheme of Examinations:

The Scheme of examinations for courses is given in Curriculum outline

2.13. Criteria for Pass:

1. No candidate shall be eligible for the award of Diploma unless he/she has undergone the prescribed course of study successfully in an institution approved by AICTE and affiliated to the State Board of Technical Education & Training, Tamil Nadu and pass all the subjects prescribed in the curriculum.

2. A candidate shall be declared to have passed the examination in a course if he/she secures not less than 40% in theory subjects and 50% in practical subjects out of the total prescribed maximum marks including both the Internal Assessment and the Autonomous Examinations marks put together, course to the condition that he/she secures at least a minimum of 40 marks out of 100 marks in the Autonomous Theory Examinations and a minimum of 50 marks out of 100 marks in the Autonomous Practical Examinations.

2.14. Classification of successful candidates:

Classification of candidates who will pass out the final examinations from April 2023 onwards (Joined first year in 2020 -2021) will be done as specified below.

First Class with Superlative Distinction:

A candidate will be declared to have passed in *First Class with Superlative Distinction* if he/she secures not less than 75% of the marks in all the courses and passes all the terms in the first appearance itself and passes all courses within the stipulated period of study $2 / 3 / 3\frac{1}{2}$ years [Full time (lateral entry)/Full Time/Sandwich] without any break in study.

First Class with Distinction:

A candidate will be declared to have passed in *First Class with Distinction* if he/she secures not less than 75% of the aggregate marks in all the terms put together and passes all the terms except the I and II term in the first appearance

itself and passes all courses within the stipulated period of study 2 / 3 / 3½ years [Full time(lateral entry)/Full Time/Sandwich] without any break in study.

First Class:

A candidate will be declared to have passed in *First Class* if he/she secures not less than 60% of the aggregate marks in all the terms put together and passes all the courses within the stipulated period of study 2 / 3 / 3½ years [Full time(lateral entry)/Full Time/Sandwich] without any break in study.

Second Class:

All other successful candidates will be declared to have passed in **Second Class**. The above classifications are also applicable for the Sandwich students who pass out Final Examination from October 2023 /April 2024 onwards (both joined First Year in 2020 -2021).

2.15. Duration of a period in the Class Time Table:

The duration of each period of instruction is 1 hour and the total period of instruction hours excluding interval and lunch break in a day should be uniformly maintained as 7 hours corresponding to 7 periods of instruction (Theory & Practical).

3. SALIENT FEATURES OF THE DIPLOMA PROGRAMME IN PAPER TECHNOLOGY

Name of the Programme	Diploma in Paper Technology
Duration of the Programme	Three and half years
Entry Qualification	Matriculation or equivalent as prescribed by State Board of Technical Education
Intake	60
Pattern of the Programme	Term Pattern
Ratio between Theory & Practical	50:50(Approx.)
Industrial Training	One year industrial training in IV Term and VII Term. Internal assessment 50 marks and external assessment marks will be 50.Total marks allotted to industrial training will be 100.
Ecology and Environment	As per Govt. of India directives, a subject on Environmental Education has been incorporated in the scheme.
Entrepreneurship Development	Entrepreneurship Development and Management has been incorporated in the scheme.

4. EMPLOYMENT OPPORTUNITIES

Employment opportunities for diploma in Paper Technology are visualized in following industrial at various levels / positions.

- i). Chemicals and Allied Industries like
 - a) Pulp and Paper Industries
 - b) Agro Industry
 - c) Industries based on Agricultural residue and recycle fibre
 - d) Paper Chemical Industries
 - e) Paper Making Machineries Manufacturing Industries
 - f) Paper projects & Consultancies
 - g) Paper Fabrics Manufacturing Industries
 - h) Consumer goods Industries etc.
 - i) Polymer Industries
 - j) Currency Note Manufacturing Mills (Govt.)
 - k) Khadhi & village board Industry (Govt. of Tamil Nadu)
 - I) Packaging Industry
 - m) Book Printing corporation (Govt)

In various functional areas like erection and commissioning of Paper Plant, plant operation, production, maintenance and safety, quality control, inspection and testing, marketing and sales, consultancy service and areas concerning environmental protection.

ii). Research Organizations like CPPRI (Central Pulp & Paper Research Institute) laboratories, FRI, establishments, pollution control labs.

iii). Entrepreneurs to small / tiny units especially Paper, agro and chemicals industries.

iv). Self employed in setting up a small unit of hand made paper.

5. COMPETENCY PROFILE OF DIPLOMA HOLDERS IN PAPER TECHNOLOGY

Keeping in view the employment opportunities of diploma holders in Paper Technology the course is aimed at developing following knowledge and skills in the students:

- 1. Basic understanding of concepts and principles related to Paper Technology
- 2. Development of communication and interpersonal skills for effective functioning in the world of work.
- 3. Understanding of basic concepts and principles of mechanical, electrical and instrument, civil, engineering so as to enable the students to apply the knowledge of these principles to the field of paper and allied industries.
- 4. Ability to read and interpret drawings related to plant layout, process equipment and components and color codes.
- 5. Knowledge of various materials used in chemical processes, their properties and specifications.
- 6. Knowledge and associated skills of various unit operations, unit processes and process instrumentation in process industry.
- 7. Ability to calculate the quantity of raw materials, energy inputs, manpower requirement and output from the process.
- 8. Ability to select the various raw materials and additives, understanding the properties and specifications for the manufacturing of pulp and paper.
- 9. Understanding of complete process of making paper starting from the raw material.
- 10.Appreciation of the need of clean and green environment and its deterioration by various emissions from industry and preventive procedures and knowledge of safety regulations in paper industry.
- 11.Development of generic skills of thinking and problem solving, communication attitudes and value system for effective functioning in a process industry.
- 12.Understanding of the basic principles of managing men, material and machines / equipment for optimum production.
- 13. Proficiency in the use of computers.
- 14.Basic manual and machining skills as an aid to function effectively in the process industry.
- 15.Knowledge of properties and conversion of paper.
- 16.Development of good personality in order to have effective communication and business ethics.

6. DERIVING CURRICULAM AREAS FROM COMPETENCY PROFILE

The following curriculum areas have been derived based on competency profile.

S.NO	Competency	Curriculum Areas / Subjects
1	Basic understanding of concepts and principles related to applied sciences like physics, chemistry and mathematics.	PhysicsChemistryMathematics
2	Development of communication and inter personal skill for effective functioning in the world of work.	- Communication Skills
3	Understanding of basic concepts and principles of mechanical, electrical and civil engineering so as to enable the students to apply the knowledge of these principles to the field of paper and allied industries.	 Engineering Mechanics General Workshop Practice
4	Ability to read and interpret drawings related to plant layout, process equipment and components and colour codes.	- Engineering Graphics
5	Knowledge of various materials used in chemical processes, their properties and specifications.	- Industrial Chemistry
6	Knowledge and associated skills of various unit operations, unit processes and process instrumentation in process industry	 Engineering Mechanics & Fluid Mechanics Unit Operations Process Instrumentation & Control
7	Ability to calculate the quantity of raw materials, energy inputs, manpower requirement and output from the process.	- Process Equipment Design
8	Ability to select the various raw materials and additives, understanding the properties and specifications for the manufacturing of pulp & paper.	- Ppt –I - Ppt - II - Ppt – III
9	Understanding of complete process of making paper starting from the raw material	- Ppt –I - Ppt - II - Ppt – III - Chemical Recovery
10	Appreciation of the need of clean and green environment and its deterioration by various emissions from industry and preventive	 Environmental Education Pollution Control In Chemical Process Industry

	procedures and knowledge of safety regulations in paper industry.		
11	Development of generic skills of thinking and problem-solving, communication, attitudes and value system for effective functioning in a process industry	-	Industrial Visits Project Work
12	Understanding of the basic principles of managing men, material and machines / equipment for optimum production	-	Entrepreneurship Development And Plant Engineering & Management
13	Proficiency in the use of computers	-	Computer Applications In Paper Industries
14	Basic manual and machining skills as an aid to function effectively in the process industry	-	General Workshop Practice
15	Knowledge of properties and conversion of paper		Paper Properties And Conversion

						TE	ERM						
SI. No	Course Code	Course	Abbr		Ηοι	ırs P	er Week		Scheme	e of Examir	ation	Minimum mark For	Duration Of Exam (Hours)
NO	Code			тн	TU	Р	Total Hours	С	Internal	External*	Total	Pass	
1	5F 3204	Industrial Chemistry	IC	5			5	5	25	100	100	40	3
2	5F 3205	Basic's Of Mechanical Engineering	BME	5			5	5	25	100	100	40	3
3	5F 3301	Pulp & Paper Technology I	PPT -1	5			5	5	25	100	100	40	3
4	5F 3206	Electrical & Electronics Engineering	EEE	5			5	5	25	100	100	40	3
5	5F 3401	Plant Engineering Management & Environmental Engineering	PME & EE	4	C		4	4	25	100	100	40	3
6	5F 3302	Pulp Technology Laboratory	PT Lab			4	4	2	25	100	100	50	3
7	5F 3207	General Engineering practical	GE Lab			4	4	2	25	100	100	50	3
				24		8	32	28					
		Physical Education	P.Ed				2						
		Library	Lib				1						
		TOTAL					35	28					

*External Marks are conducted for 100 Marks and converted to 75 Marks Abbr- ABBRIVATION TH –THEORY TU – TUTORIAL P – PRACTICAL C – CREDIT

IV TERM

SI. No	Course Code	Course	Abbr		Hou	ırs P	er Week		Scheme	e of Examin	ation	Minimum mark For	Duration Of Exam (Hours)
NO				тн	TU	Ρ	Total Hours	С	Internal	External*	Total	Pass	
1	5F4303	Pulping Operation Electrical and Mechanical Maintenance	POE MM			24	24	12	25	100	100	50	3
2	5F4304	Chemical Recovery Operation and Maintenance	CRO MM			24	24	12	25	100	100	50	3
		TOTAL				48	48	24					
	5F0005	Concurrent career Development**	CCD					5	25	100	100	40	3

*External Marks are conducted for 100 Marks and converted to 75 Marks Abbr- ABBRIVATION TH –THEORY TU – TUTORIAL P – PRACTICAL C – CREDIT ** The total hours allotted for taking CCD is 75 Hrs and will be handled with flexible timings

V	TERM	
---	------	--

SI. No	Course Code	Course	Abbr		Ηοι	ırs P	er Week		Scheme	Scheme of Examination			Duration Of Exam
NO	oouc			тн	TU	Р	Total Hours	С	Internal	External*	Total	Pass	(Hours)
1	5F5305	Pulp And Paper Technology II	PPT – II	6			6	6	25	100	100	40	3
2	5F5208	Unit Operations	UO	5			5	5	25	100	100	40	3
3	5F5402	Process Instrumentation And Control	PIC	5			5	5	25	100	100	40	3
4	5F5209	Entrepreneurship and Startups	ES			4	4	2	25	100	100	50	3
5	5F5210	Unit Operations Laboratory	UO Lab			4	4	2	25	100	100	50	3
6	5F5211	Environmental Engineering Laboratory	EE Lab			4	4	2	25	100	100	50	3
7	5F5403	Process Instrumentation And Control Laboratory	PIC Lab			4	4	2	25	100	100	50	3
				16		16	32	24					
		Physical Education	P.Ed				2						
		Library	Lib				1						
		TOTAL					35	24					
	5F0006	Universal Human Values**	UHV					5	25	100	100	40	3

*External Marks are conducted for 100 Marks and converted to 75 Marks Abbr- ABBRIVATION TH –THEORY TU – TUTORIAL P – PRACTICAL C – CREDIT

** The total hours allotted for taking UHV is 75 Hrs and will be handled with flexible timings

VI TERM

SI. No	Course Code	Course	Abbr		Ηοι	ırs P	er Week	Σ.	Scheme	ne of Examinatio		Minimum mark For	Duration Of Exam
No	oouc			тн	TU	Ρ	Total Hours	С	Internal	External*	Total	Pass	(Hours)
1	5F6306	Chemical Recovery	CR	5			5	5	25	100	100	40	3
2	5F6307	Pulp And Paper Technology III	PPT – III	5			5	5	25	100	100	40	3
3	5F6308	Process Design Concept	PDC	4			4	4	25	100	100	40	3
4	5F6309	Paper Technology Laboratory	PAT Lab			4	4	2	25	100	100	40	3
5	5F6310	Chemical Recovery And Technical Analysis Laboratory	CR & TA Lab			4	4	2	25	100	100	40	3
6	5F6311	Project Work	PW			6	6	3	25	100	100	50	3
7	5F6312	Process Design & Simulation Practical	PD & S			4	4	2	25	100	100	50	3
				14		18	32	23					
		Physical Education	P.Ed				2						
		Library	Lib				1	23					
		TOTAL					35						

*External Marks are conducted for 100 Marks and converted to 75 Marks Abbr- ABBRIVATION TH –THEORY TU – TUTORIAL P – PRACTICAL C – CREDIT

VII TERM

SI. No	Course		Abbr		Hou	ırs P	er Week		Scheme	e of Examin	ation	Minimum mark For	Duration Of Exam
	Code			ΤН	TU	Ρ	Total Hours	С	Internal	External*	Total	Pass	(Hours)
1	5F7312	Control Laboratory Utilities and Instrumentation	CLUI			24	24	12	25	100	100	50	3
2	5F7313	Paper Making Operation and Mechanical Maintenance	PMO MM			24	24	12	25	100	100	50	3
		TOTAL				48	48	24					

*External Marks are conducted for 100 Marks and converted to 75 Marks Abbr- ABBRIVATION TH –THEORY TU – TUTORIAL P – PRACTICAL C – CREDIT

DIPLOMA IN PAPER TECHNOLOGY – E SCHEME COMPARISION BETWEEN "E" SCHEME AND "F" SCHEME

			THIRD TERM		
SL.NO	E SCHEME	T/P	F SCHEME	T/P	REMARKS
1	Industrial Chemistry	т	Industrial Chemistry	Т	same as E SCHEME
2	Basis Of Mechanical Engineering & Fluid Mechanics	Т	Basic's Of Mechanical Engineering	т	same as E SCHEME
3	Pulp And Paper Technology – I	Т	Pulp & Paper Technology I	т	same as E SCHEME
4	Electrical & Electronics Engineering	т	Electrical & Electronics Engineering	т	same as E SCHEME
5			Plant Engineering Management & Environmental Engineering	т	Shifted from VI Term to III Term
6	Fluid Mechanics Laboratory	Р	Concret Engineering practical	Р	Fluid Mechanics Laboratory & Electrical & Electronics
6	Electrical & Electronics Engineering Lab	Р	General Engineering practical		Engineering Lab are merged
7	Pulp Technology Laboratory	Р	Pulp Technology Laboratory	Р	same as E SCHEME
	0.5	NEW	SUBJECT INTRODUCED		
8			Physical Education		NIL
9			Library		NIL

	FOURTH TERM											
SL.NO	E SCHEME	T/P	F SCHEME	T/P	REMARKS							
1	Pulping Operation Electrical and Mechanical Maintenance	Р	Pulping Operation Electrical and Mechanical Maintenance	Р	same as E SCHEME							
2	Chemical Recovery Operation and Maintenance	Р	Chemical Recovery Operation and Maintenance	Р	same as E SCHEME							
NEW SUBJECT INTRODUCED												
3			Concurrent career Development	Т								

			FIFTH TERM		
SL.NO	E SCHEME	T/P	F SCHEME	T/P	REMARKS
1	Process instrumentation and control	Т	Process Instrumentation And Control	т	same as E SCHEME
	Plant Engineering Management	т			Shifted to III term from IV term
2	Pulp and Paper Technology-II	т	Pulp And Paper Technology II	т	Not Equivalent
3	Unit operations	т	Unit Operations	т	Not Equivalent
4	Process Instrumentation And Control Laboratory	Р	Process instrumentation and control Lab	Р	same as E SCHEME
	Life And Employability Skills	Р			Removed
5			Environmental Engineering Laboratory	Р	Shifted from VI Term to V Term
6	Unit Operations Laboratory	Р	Unit Operations Laboratory	Р	same as E SCHEME
			NEW SUBJECT INTRODUCED		
7			Universal Human Values	Т	
			Entrepreneurship and Startups	Р	
8			Physical Education		
9			Library		

			SIXTH TERM		
SL.NO	E SCHEME	T/P	F SCHEME	T/P	REMARKS
1	Chemical Recovery	т	Chemical Recovery	Т	same as E SCHEME
2	Pulp and Paper Technology-III	т	Pulp And Paper Technology III	Т	same as E SCHEME
3	Process Equipment Design and Environmental Engineering	Т	Process Design Concept	т	Not Equivalent
4	Paper Technology Laboratory	Р	Paper Technology Laboratory	Р	same as E SCHEME
	Environmental Engineering Laboratory	Р			Shifted to V Term from VI Term
5	Chemical Recovery And Technical Analysis Laboratory	Р	Chemical Recovery And Technical Analysis Laboratory	Р	same as E SCHEME
6	Project Work & Entrepreneurship Management	Р	Project Work	Р	same as E SCHEME
	C	NEW S	SUBJECT INTRODUCED		
7			Process Design & Simulation Practical	Р	
			Physical Education		
			Library		

	SEVENTH TERM									
SL.NO	E SCHEME	T/P	F SCHEME	T/P	REMARKS					
1	Control Laboratory Utilities and Instrumentation	Р	Control Laboratory Utilities and Instrumentation	Р	same as E SCHEME					
2	Paper Making operation and Mechanical Maintenance	Р	Paper Making operation and Mechanical Maintenance	Р	same as E SCHEME					
	NEW SUBJECT INTRODUCED									
	NIL		NIL		NIL					

SL.	SUBJECTS				IN HO MEST	
NO.		III	IV	V	VI	VII
1	Industrial Chemistry	5				
2	Basic's Of Mechanical Engineering	5				
3	Pulp & Paper Technology I	5				
4	Electrical & Electronics Engineering	5				
5	Plant Engineering Management & Environmental Engineering	4				
6	Pulp Technology Laboratory	4				
7	General Engineering practical	4				
8	Physical Education	2				
9	Library	1				
10	Pulping Operation Electrical and Mechanical Maintenance		24			
11	Chemical Recovery Operation and Maintenance		24			
12	Concurrent career Development*		5			
13	Pulp And Paper Technology II			6		
14	Unit Operations			5		
15	Process Instrumentation And Control			5		
16	Entrepreneurship and Startups			4		
17	Unit Operations Laboratory			4		
18	Environmental Engineering Laboratory			4		
19	Process Instrumentation And Control Laboratory			4		
20	Physical Education			2		
21	Library			1		
22	Universal Human Values*			3		
23	Chemical Recovery				5	
24	Pulp And Paper Technology III				5	
25	Process Design Concept				4	
26	Paper Technology Laboratory				4	
27	Chemical Recovery And Technical Analysis Laboratory				4	
28	Project Work				6	
29	Process Design & Simulation Practical				4	
30	Physical Education				2	
31	Library				1	
32	Control Laboratory Utilities and Instrumentation					24
33	Paper Making Operation and Mechanical Maintenance					24
	TOTAL	35	53	38	35	48

DETAILED CONTENTS OF VARIOUS SUBJECTS

		5F3204 - INDUSTRIAL CHEMISTRY
Programme Name	:	5F- 3204-DIPLOMA IN PAPER TECHNOLOGY
Course Code	:	5F3204
Term	:	III
Course Name	:	INDUSTRIAL CHEMISTRY

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Course	Instructions		Examination					
	Hours	Hours						
	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total	Duration		
INDUSTRIAL CHEMISTRY	5	80	25	100*	100	3 Hrs.		

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс					
I	Carbohydrates & cellulose chemistry	15				
II	Manufacturing of chemical additives for Paper Industry & Polymer Industry	14				
III	Dyes	15				
IV	Structure & Reaction of Lignin	14				
V	Basics of Fattyacids, Formaldehyde & Pigments	15				
Test & Model Exam						
Total						

RATIONALE:

Study of industrial chemistry is an essential part in study of pulp and paper technology. The subject forms the foundation of pulp and paper technology. It prepares the students to familiarize with basic concepts and principles of industrial chemistry. Study of industrial chemistry constitutes the basic and fundamental aspect of deriving insight into the functioning and analysis of industrial chemistry, instruments and machineries.

OBJECTIVES:

On completion of the course the students will be able

- To learn about the structure and chemistry of carbohydrate, cellulose and lignin.
- > To know about the different methods of manufacturing of chlorine, caustic soda, alum andchlorine-di-oxide and its uses.
- > To know about the different types of dyes and their multiple uses.
- To know about the methods of preparation, properties and uses of fatty acids and formaldehyde.
- > To learn about the different type of pigments, their properties and uses.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL		
CO1	Able to understand the classification of carbohydrates & structure			
	of starch and cellulose.			
CO2	Able to understand the manufacturing methods of chemical			
	additives used in paper industry.	0		
CO3	ble to identify the types of dyes and to understand the			
	applications of various dyes.	U		
CO4	Able to interpret the structure & reactions of lignin	U		
CO5	Able to explain the preparation & properties of fatty acids,			
	Formaldehyde	0		
Legends: R – Remember II – Understand: A – Apply and above levels (BTI -Bloom's				

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

				_	-				
со	Program Outcomes (PO)						Program Specific Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation									
Strong – S / 3			Medium – M /2			Weak – W / 1			

Course-PO Attainment Matrix

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO.

- If <u>>40%</u> of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3
- If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2
- If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1
- If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

DETAILED SYLLABUS

Unit	Name of the Topics	Hours
-	CARBOHYDRATES & CELLULOSE CHEMISTRY	
•	Chapter 1.1 – Carbohydrates	
	Definition-Nomenclature-Classification-Monosaccharides,	
	Disaccharides &Polysaccharides.	
	Chapter 1.2 -Starch Starch and its two fractions –Alpha	
	amylose and Beta amylose - A short note on their separation –	
	Their solubility in water and their reaction with iodine only –	
	applications of starch – Native starch, oxidised starch, cationic	15
	starch – preparation – properties & applications – integrated &	_
	non integrated process (R8).	
	Chapter 1.3 – Cellulose	
	Chemical structure of Cellulose – Reason for Fibrous structure –	
	Sorptive property – Swelling property – Degradation reaction with	
	alkali (peeling off reaction) and decomposition reaction with	
	chlorine & Chlorine dioxide.	
Π	MANUFACTURING OF CHEMICAL ADDITIVES FOR PAPER	
	INDUSTRY & POLYMER INDUSTRY	
	Chapter 2.1 – Chemical additives used in industry-	
	Manufacture of Chlorine and caustic soda by Mercury cell	
	method and Membrane cell method- simple description with	
	diagrams.	
	Chapter 2.2 – Manufacture of chlorine dioxide and oxygen-	
	physical and chemical properties of chlorine, chlorine dioxide	
	and oxygen – Uses of chlorine, Chlorine dioxide and Oxygen	14
	with respect to a paper mill.	17
	Chapter 2.3 – Chemical formula – Manufacturing method of	
	alum from bauxite ore—General uses –Papermakers alum and	
	the effect of impurities such as Ferric salts – Manufacture of	
	PAC and its uses.	
	Chapter 2.4 - Definition of polymerization- degree of	
	polymerization – Types	
	of polymerisation-General principles of addition and condensation	
	polymerization reaction – Some common examples for each.	
III	DYES Chapter 3.1 Definition Characteristics Relationship between	
	Chapter 3.1 – Definition-Characteristics-Relationship between	
	color and constitution–The concept of auxochrome and	15
	chromophore – Classification according to application–Acid	
	dyes, Direct dyes, Basic dyes, Pigment dyes –One example for each.	

IV	 STRUCTURE & REACTION OF LIGNIN Chapter 4.1 – Elementary composition–Functional groups– Structure of lignin fragments. Cellulose & lignin comparison. Chapter 4.2 – Sulphonation – Mercaptation– Condensation- Oxidation reaction such as Hypochlorite Oxidation, Chlorite Oxidation, peroxide Oxidation and permanganate Oxidation–Halogenation. Short notes on uses of polymeric products from lignin in various fields. 	14
V	BASICS OF FATTY ACIDS, FORMALDEHYDE & PIGMENTS Chapter 5.1 – Fatty Acids Nomenclature General methods of preparation by (i) Oxidation of carbonyl compounds (ii) Hydrolysis of cyanides (iii) Using Grignard reagent (Reaction with dicarboxylicacids) General Chemical Reaction (i) Alkylgroup (Halogenationandoxidation) (ii) Carboxyl group (1.Withalkalis, withmetals, with alcohols with phosphorus halides and dehydration only) Chapter 5.2 –Formaldehyde Industrial preparation – Physical properties – Chemical properties involving reactions with ammonia (urotropine), with sodium hydroxide (cannizzaro reaction) and with alcohols (methyl formation)–Polymers of formaldehyde– Bakelite formation with phenol–Uses of formaldehyde. Chapter 5.3 – Pigments Definition-Characteristics- chemical properties and pigmentary properties of titanium calcium pigments, potassium titanate pigment, Hydrated silica only – Uses of pigments. Definitionate silica only – Uses of pigments.	15

Reference Books

- 1 Text Book Organic Chemistry Vol I & II, I.L. Finar, Prentice Hall India
- 2 Pulp & paper science and Technology Vol .I, Casey J.P. , Academic Press
- 3 Hand Book of pulp & paper Technology, Kenneth W.Britt, CBS Pubishers
- 4 Text Book of Organic chemistry (For B.Sc. Degree), Bahiand Tuli, Prentice Hall India
- 5 Text book of organic chemistry, P.L.Soni, Sultan Chand & sons

OUTCOMES after the Completion of the Course:

Course Delivery

The course will be delivered through lectures and Power point presentations/ Video **Course Assessment and Evaluation Scheme**

		r			- · ·	-
Method	What	То	When/Where	Max	Evidence	Course
		whom	(Frequency in	Marks	collected	outcomes
			the course)			
	CAT		Three CAT			
		tests (A	tests (Average		CAT Answer	
			of three tests	20		1 to 5
			will be		Scripts	
ent			computed)			
L S S			Student	05	Activity	1 to 5
ses			activities	05	Reports	1 10 5
Direct Assessment			Total	25		
Lec	End		End of the	400	Answer	1 to 5
Ō	Exam	Students	course	100	scripts at AE	1 to 5
	Student	nde	Middle of the		Feedback forms	1,2,3
	Feedback	St	course			Delivery of
	on course					course
	End of		End of the			1 to 6
ent	Course		course			Effectivene
L S S	Survey					ss of
ses					Questionnair	Delivery of
As:					es	instruction
act						s &
Indirect Assessment						Assessme
						nt Methods

Note: Internal Assessment (CAT) test shall be conducted for 50 marks. Average marks of three tests shall be rounded off to the next higher digit.

Questions for CAT and AE will be designed to evaluate the various educational components (Bloom's taxonomy) such as:

SI.	Bloom's Category	%
1	Remembrance	
2	Understanding	
3	Application	

Note to Internal Assessment verifier. The following documents to be verified by CIE verifier at the end of semester

- 1. CAT Answer Scripts (20 marks)
- 2. Student suggested activities(assignments) report for 5 marks
- 3. Student feedback on course regarding Effectiveness of Delivery of instructions & Assessment Methods.

Autonomous Examination-Question Paper Pattern

Time: 3 Hrs. Max.Marks:100

Model question paper YEAR/SEM : II/III MAX MARKS: 100 Part A

Q. No	Answer the 10 questions out of the 15 questions. All questions carry equal marks (10x3=30)	UNIT	Bloom's level
1.	Define carbohydrates and mention their types.	1	R
2.	How starch reacts with iodine? Write the reaction.	1	U
3.	Give the reasons for the fibrous structure of cellulose.	1	U
4.	What is paper maker's alum? Mention its significance.	2	U
5.	What is meant by degree of polymerization?	2	R
6.	Write the chemical properties of chlorine dioxide.	2	U
7.	Mention the characteristics of dyes.	3	U
8.	Mention the applications of direct dyes.	3	An
9.	What are vat dyes? Give examples.	3	R
10.	What is mercarptation?	4	U
11.	List the functional groups in lignin.	4	R
12.	What is meant by hydrolysis of cyanides?	4	U
13.	Write the chemical reaction of bakellite formation with Phenol.	5	U
14.	Write the uses of formaldehyde.	5	R
15.	State the term pigments with their types and example.	5	U

Q. No		<u>PART –B</u> swer all the questions choosing either sub division(A) subdivision (B) of each questions. All questions carry equal marks (5x14=70)			Bloom 's level
	A. 1	Explain in detail about the nomenclature of carbohydrates.	1	8	(R)
	A. 2	Briefly write about starch and its two fractions.	1	6	(U)
		(Or)			
16	B. 1	Describe about degradation reaction of cellulose with alkali and decomposition reaction of cellulose with chlorine dioxide.	1	8	(U)
	B. 2	Explain in detail about the integrated and non-integrated process.	1	6	(R)
	A. 1	Explain about the manufacture of chlorine and caustic soda by mercury cell method.	2	8	(U)
	A. 2	How oxygen is prepared? Mention its properties and uses.	2	6	(R)
17		(Or)			
	B. 1	Write the difference between addition and condensation polymerization.	2	8	(U)
	B. 2	Write a short note on manufacture of PAC and its uses.	2	6	(U)
		Write in detail about the colour and constitution of dyes.	3	8	(U)
	A. 1 A. 2	Explain about the concept of chromophore and auxochrome with example.	3	6	(C) (R)
18		(Or)			
10	B. 1	Write briefly about pigment dyes with example.	3	8	(U)
	B. 2	Write in detail about acidic and basic dyes with example.	3	6	(R)
	A. 1	Compare cellulose with lignin.	4	8	(U)
	A. 2	Write a short note on the following: i) Suphonation of lignin ii) Permanganate oxidation (Or)	4	6	(R)
19	B. 1	(OI) Briefly explain about the uses of polymeric products from lignin in various fields.	4	8	(R)
	B. 2	Write about Peroxide oxidation and permanganate oxidation with reactions.	4	6	(U)

	A. 1	Explain the reaction of carboxylic acid with Grignard reagent with equation.	5	8	(U)
	A. 2	Write about urotropine reaction and Cannizaro reaction with equation.	5	6	(U)
20		(Or)			
•	B. 1	Describe about chemical and pigmentary properties of titanium calcium pigments.	5	8	(R)
	B. 2	Explain about the industrial preparation of formaldehyde.	5	6	(U)

Note: Board Examinations will be conducted for 100 Marks and converted to 75 Marks.

5F3205 - BASIC'S OF MECHANICAL ENGINEERING

Programme Name	:	5F3205 - DIPLOMA IN PAPER TECHNOLOGY
Course Code	:	5F3205
Term	:	111
Course Name	:	BASIS OF MECHANICAL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination				
Course	Hours	Hours	Marks				
	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total		
BASIS OF MECHANICAL ENGINEERING	5	80	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	Properties of materials & Fluid moving machinery used in industry	15
II	Bearings & Transmission of motion	14
	Fluid Statics & Fluid Dynamics	15
IV	Thermodynamics, Fuels and combustion	14
V	Steam Boilers & Steam Turbines	15
	Test & Model Exam	7
	Total	80

RATIONALE:

A diploma holder has to assist in activities of installation, operation and maintenance etc of different machines and equipment. The subject of General engineering has been included to impart basic knowledge of fluid is very essential because all paper plants have fluid flow. The examples are flow of stream and gases in pipes, flow of liquid in pipes and open channels etc. This subject aims at the basic concepts of fluid flow, measurement techniques involved for the same and equipments used for the transportation of fluids. With this background, students will be able to quantitatively find out material and power requirement for a process.

OBJECTIVES:

At the end of this course, students must be able to know about

- The basic mechanical properties of metal and different kind of stress and strain
- > Different types of springs, bearings and different types of drives,
- > The basic properties of fluids
- > Characteristics of the fluid at static and dynamic conditions
- > Bernoulli's equation and its application in fluid flow
- > Distinguish between laminar flow and turbulent flow
- > Different types of friction occurring due to fluid flow.
- > Different types of valves and their specific applications.
- Different types of pumps used for transportation of liquids and their method construction and working principle
- Specific fields of application of pumps
- > Performance characteristics of centrifugal and reciprocating pumps
- > Know the basics of energy production from boilers
- > Able to understand the properties of Thermodynamics
- > Know the applications of fuels.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
CO1	Able to understand the basic properties of materials & fluid moving machineries used in industries	R
CO2	Able to differentiate Bearings & types of the transmission of motion	Α
CO3	Can understand the basic properties of fluids, Fluid statics & Fluid dynamics	Α
CO4	Able to understand the basic thermodynamic properties & combustion of fuels	Α
CO5	Understand the construction & working of steam boilers & turbines	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

Program Specific CO Program Outcomes (PO) Outcomes (PSO) PO1 PO2 PO3 PO4 PO5 PO6 **PO7** PSO1 PSO₂ CO1 CO₂ CO₃ **CO4** CO5 TOTAL No. of COs Mapping with POs Average Round off(Average) Correlation Medium – M /2 Weak – W / 1 Strong – S / 3 Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO.

Course-PO Attainment Matrix

• If >40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3

- If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2
- If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1
- If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Time
I	 Properties of materials & Fluid moving machinery used in industry Chapter 1.1 - Definition of Elasticity – Plasticity – Ductility – Malleability –Toughness- Hardness –Stiffness, Tensile, Compressive and Shear Stress , Hooke's law, Stress strain curve, Chapter 1.2 - Fluid moving machinery: Valves & Types - Gate valve, Globe valve and Check valves - Fans, Blowers, Compressors & Pumps - Construction and working of Reciprocating pumps – Screw pump – External and internal Gear pump – Diaphragm pump – centrifugal pump – Multistage centrifuge pumps - self priming pumps – Water Ring pumps 	15
11	 centrifuge pumps- self priming pumps – Water Ring pumps. Bearings & Transmission of motion Chapter 2.1 - Bearing– Types – Journal – Ball – Roller – Tapper Roller – Needle Bearings –Comparison of Journal And Ball Bearings – Linear Motion Bearings & Applications – Lubricant – Types – Solid, Semisolid And Liquid Lubricants - Properties Of Lubricants. Chapter 2.2 - Drives – Types – Belt, Chain, Gear Drives – Applications – Merits And Demerits. Cams & followers 	14
111	 Fluid Statics & Fluid Dynamics Chapter 3.1 - Definitions of Compressible and incompressible fluids– Newtonian and non Newtonian fluids– Properties of fluids – Density, specific gravity, specific weight, viscosity, surface tension, capillarity – Turbulent flow – laminar flow – Boundary layer formation. Chapter 3.2 - Manometers – U- tube, single column manometers inclined tube manometers – Simple numerical on simple U tube & differential U tube manometers Chapter 3.3 - Fluid Dynamics: Continuity equation –Bernoulli's equation – Application of Bernoulli's Theorem 	15

IV	 Thermodynamics, Fuels and combustion Chapter 4.1 - Terminologies in Thermodynamics (definition only) System and surroundings- open system, closed system, and isolated system- Thermodynamic equilibrium – Laws of Thermodynamics – First law – Second law – Zeroth law Chapter 4.2 - Classification of fuels– Solid, liquid and gaseous fuels - merits and demerits – Fossil fuels and non-fossil fuels – Requirements of a good fuel – combustion of fuels– Excess air - products of combustion – Calorific value of fuels (definition only) – LCV and HCV – Orsat analysis for flue gas analysis. 	14
v	 STEAM BOILERS & STEAM TURBINES Chapter 5.1 - Properties of steam (Sensible, Latent heat & Dryness fraction) - Classification of boiler – Working principles of high pressure boiler–advantages of high pressure boilers –-Boiler mountings and Accessories – Boiler draught - Safety precaution in boiler operation. Chapter 5.2 - Steam turbine – classification -Construction and working of impulse and reaction steam turbines – Advantages & Disadvantages Comparison of impulse and reaction turbines. 	15

Reference Books

1 Strength of Materials, Ramamirtham, Dhanpatrai&Co

2 Strength of Materials, Bhavilkatti.s, Vikas publication

3 Strength of Materials, Dr. Bansal, Laxmi Publication

4 Theory of Machines, R.SKurmi & J.K Gupta, S. Chand & Company Ltd, New Delhi.

5 Fluid Mechanics & Hydraulic Machines, Ramamirtham, Dhanpatrai&Co

6 Unit operation in chemical Engineering, Warren L Mc abe and jullian D. Smith, McGraw Hill

	Autonomous Examination-Question Paper Patte Time: 3 Hrs. Max.Marks:100 <u>Model question paper</u> YEAR/SEM : II/III MAX MARKS: 100 <u>Part A</u>	<u>ern</u>	
Q.no	Answer the 10 questions out of the 15 questions. All questions carry equal marks (10x3=30)	UNIT	Bloom's level
1.	What is valve?	1	(R)
2.	What is priming?	1	(R)
3.	List the mechanical properties.	1	(R)
4.	What are the types of bearing?	2	(R)
5.	What are the properties of lubricant?	2	(R)
6.	List the types of belt.	2	(R)
7.	Explain capillarity?	3	(U)
8.	Define compressible & incompressible fluid.	3	(R)
9.	What is manometer?	3	(R)
10.	What is a solid fuel?	4	(R)
11.	What is calorific value of fuels?	4	(R)
12.	Define specific heat capacity at constant pressure.	4	(R)
13.	What is sensible heat of water?	5	(R)
14.	What is super heated steam?	5	(R)
15.	What is nozzle?	5	(R)

Q.no		<u>PART –B</u> Answer all the questions choosing either sub division(A) or subdivision (B) of each questions. All questions carry equal marks (5x14=70)							
	A. 1	Explain with neat sketch external gear pump.	1	8	(U)				
	A. 2	Explain gate valve with neat sketch.	1	6	(U)				
16		(or)							
	B. 1	Explain with neat sketch centrifugal pump	1	8	(U)				
	B. 2	Explain the properties of engineering materials.	1	6	(U)				
	A. 1	Explain with neat sketch taper roller bearing and needle bearing.	2	8	(U)				
	A. 2	Explain types of cam and cam follower with neat sketch.	2	6	(U)				
17		(or)							
	B. 1	Explain any two types of gear drive with neat sketch.	2	8	(U)				
	B. 2	What are the types of belt and explain any one with a neat sketch.	2	6	(U)				
	A. 1	Describe the laminar and turbulent flow in boundary layer with neat sketch.	3	8	(U)				
	A. 2	Explain the properties of fluids	3	6	(U)				
18		(or)							
	B. 1	State and prove the Bernoulli's theorem.	3	8	(R)				
	B. 2	Explain the expression of U- tube differential manometer.	3	6	(U)				
	A. 1	Explain zeroth law and first law of thermodynamics.	4	8	(U)				
	A. 2	Explain the analysis of exhaust gas with neat sketch.	4	6	(U)				
19		(or)							
	B. 1	Explain liquid fuels and gaseous fuels with advantages and disadvantages.	4	8	(U)				
	B. 2	Explain clausis statement.	4	6	(U)				

	A. 1	Explain BHEL boiler with neat sketch.	5	8	(U)
	A. 2	Explain impulse turbine with neat sketch.	5	6	(U)
20		(or)			
	B. 1	Explain any three boiler mountings with neat sketch.	5	8	(U)
	B. 2	Explain reaction turbine with neat sketch.	5	6	(U)

Note: Board Examinations will be conducted for 100 Marks and converted to 75 Marks.

5F3206 - ELECTRICAL & ELECTRONICS ENGINEERING

Programme Name	:	5F3206-DIPLOMA IN PAPER TECHNOLOGY.
Course Code	:	5F3206
Term	:	III
Course Name	:	ELECTRICAL AND ELECTRONICS ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions		Examination			
Course	Hours	Hours		Marks			
	/ Week	/ Term	Internal Assessment	Autonomous Examination		Duration	
ELECTRICAL AND ELECTRONICS ENGINEERING	5	80	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	BASIS OF DC AND AC CIRCUITS & BASIC LAWS	14
	DC MACHINE & TRANSFORMERS	15
III	AC MACHINES	14
IV	ELECTRONIC DEVICES	15
V	MEASUREING INSRUMENTS & PLC	15
	Test & Model Exam	7
	Total	80

RATIONALE:

The pulp and paper industry depends on electric motors, electronics, instrumentation and control for their day today operation therefore, it sounds better if engineering professional faculty understand the basic of electric and electronics engineering. This subject is aimed at developed the required fundamentals.

OBJECTIVES:

On completion of the units of syllabus contents the students will be able to understand

- > Fundamental concepts of DC and AC electric circuits
- Basic power system structure and laws
- The construction, working principle and applications of simple DC Generator, DC Motor and Transformer
- The concept of three phase AC system, Rotating Magnetic Field The construction, working principle and applications of various AC Machines used in chemical industries such as three phase induction Motor, Alternator, Synchronous Motor and single phase induction Motors.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
CO1	Able to understand the fundamental concepts of DC & AC Circuits	R
CO2	Able to understand the construction and working of DC machine & transformers	Α
CO3	Able to understand the construction and working of AC Machines	Α
CO4	To understand the fundamental concept of Electronic devices	Α
CO5	Able to understand the construction and working of Transducer, CRO & PLC	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

CO Program Outcomes (PO) Program Specific											
		FI	ogram	Outco	mes (P	0)					
								Outcomes (PSO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2		
CO1											
CO2											
CO3											
CO4											
CO5											
TOTAL											
No. of COs											
Mapping with											
POs											
Average											
Round											
off(Average)											
Correlation	Correlation										
Strong – S / 3			Mediu	n – M /	2		Weak	- W / 1			

Course-PO Attainment Matrix

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO.

- If <u>>40%</u> of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3
- If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2
- If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1
- If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

DETAILED SYLLABUS

UNIT	NAME OF THE TOPIC	HOURS
1	BASIS OF DC AND AC CIRCUITS & BASIC LAWSChapter: 1.1Basics Of D.C And A.C Circuits: Definitions– Voltage, Current, Resistance, Power, Energy and their units. Equivalent resistance of Series, parallel and Series Parallel circuits (Derivation)- simple Problems.Chapter: 1.2Basic Laws: Ohms Law, Kirchoffs laws (Statement & Explanation)Chapter: 1.3A.C Circuits –Definition of Inductance, Capacitance, Reactance and Impedance - Basic concept of RL, RC, RLC series circuit.(only theory) .Basic concept of 3 phase supply (only theory)Chapter: 1.4Basic Structure of Power Generation, Transmission and Distribution System (elementary treatment only)	
I	DC MACHINE & TRANSFORMERSChapter: 2.1Magnetism : Definition of MMF, Flux, Reluctance, Permeability and Flux density and their units. Faradays Laws of Electromagnetic induction, Flemming"s Left hand and Right hand ruleChapter: 2.2Dc Generator: Parts and Functions of Generator- Working- Types – Applications.Chapter: 2.3Dc Motor: Principle of Working- Back EMF- Types- Uses. Starters- Necessity - Construction and Working of Three Point Starter – Speed control of DC Motors – Armature voltage control and field weakening mode.Chapter: 2.4Transformer: Principle of Working- Star and Delta types of interconnection in three phase transformer (only illustration) – Uses – Auto Transformer.	15

	AC MACHINES	
	Chapter: 3.1 Three Phase Alternator: Principle of Working -	
	Construction of Salient and Non Salient Pole Rotors- Speed and	
	Frequency relation.	
	Chapter: 3.2 Synchronous Motor: Principle of Working -	
	Synchronous speed – Starting -Uses.	
	Chapter: 3.3 Three Phase Induction Motor: Principle of	14
	Working-Types of Rotors- Slip Ring and Squirrel cage - Slip-	14
	Comparison of Slip Ring and Squirrel cage motors- Uses.	
	Chapter: 3.4 Single Phase Induction Motor: Construction,	
	Working and Uses of Split Phase Induction Motor- Capacitor Start	
	and Induction Run Motor - Universal Motor - Speed control of AC	
	motors – Pole changing & frequency control (V/F by using power	
	electronic devices)	
IV	ELECTRONIC DEVICES	
	<u>Chapter: 4.1</u> Diode – forward biasing and reverse biasing – use of	
	diode in rectifiers - half wave, full wave & Bridge rectifiers -	
	necessity of filters - Regulated power supplies: IC voltage	
	regulators – SMPS, UPS and inverters – General description and	
	their applications	15
	Chapter: 4.2 Display devices – LED, 7 segment LED, LCD.	15
	<u>Chapter: 4.3</u> Logic gates: Positive and negative logic, definition,	
	symbol, truth table, Boolean expression for OR, AND,	
	NOT,NOR,NAND,EXOR and EXNOR gates.	
	<u>Chapter: 4.4</u> Microcontroller: Definition of microcontroller-	
	Block diagram with pin details - uses.	
V	MEASUREING INSRUMENTS & PLC	
	<u>Chapter:5.1</u> Instruments: Construction and Working of PMMC,	
	Dynamometer type Wattmeter & Induction type Energy meter -	
	Megger and it's uses.	
	<u>Chapter: 5.2</u> Electrical Safety: Importance of earthing - electric	
	shock: first aid, precautions - causes of accident and their	
	preventive measures. Energy conservation: Energy conservation	15
	measures in Homes & Industries. Uses of fuses and MCB.	
	Chapter: 5.3 Cathode Ray Oscilloscope: Block Diagram and	
	Working of CRO – Diagram of CRT with functions of each parts-	
	Uses.	
	Chapter: 5.4 Programmable Logic Controllers: Definition-	
	Block Diagram- Applications	

- Reference Books
 - 1. www.allaboutcircuits.com/textbook/direct.../electric-circuits/
 - 2. www.electrical4u.com/battery-history-and-working-principle-of-batteries/ OUTCOMES for After Completion the Course:

Course Delivery

The course will be delivered through lectures and Power point presentations/ Video **Course Assessment and Evaluation Scheme**

					1	
Method	What	То	When/Where	Max	Evidence	Course
		whom	(Frequency in	Marks	collected	outcomes
			the course)			
	CAT		Three CAT			
			tests (Average		CAT Answer	
			of three tests	20		1 to 5
			will be		Scripts	
ent			computed)			
sm			Student	05	Activity	1 to 5
ses			activities	05	Reports	1 10 5
Direct Assessment			Total	25		
Lec lec	End		End of the	100	Answer	1 to 5
ā	Exam	Students	course	100	scripts at AE	1 to 5
	Student	nde	Middle of the		Feedback	1,2,3
	Feedback	Sti	course		forms	Delivery of
	on course					course
	End of		End of the			1 to 6
ent	Course		course			Effectivene
Sm	Survey					ss of
ses					Questionnair	Delivery of
As:					es	instruction
Indirect Assessment						s &
dire						Assessme
<u> </u>						nt Methods

Note: Internal Assessment (CAT) test shall be conducted for 50 marks. Average marks of three tests shall be rounded off to the next higher digit.

Questions for CAT and AE will be designed to evaluate the various educational components (Bloom's taxonomy) such as:

SI.	Bloom's Category	%
1	Remembrance	
2	Understanding	
3	Application	

Note to Internal Assessment verifier. The following documents to be verified by CIE verifier at the end of semester

- 4. CAT Answer Scripts (20 marks)
- 5. Student suggested activities(assignments) report for 5 marks
- 6. Student feedback on course regarding Effectiveness of Delivery of instructions & Assessment Methods.

Autonomous Examination-Question Paper Pattern

Time: 3 Hrs. Max.Marks:100

Model question paper YEAR/SEM : II/III MAX MARKS: 100 Part A

S.No	Answer the 10 questions out of the 15 questions. All questions carry equal marks (10x3=30)	UNIT	Bloom's level
1.	State Ohm's law	1	R
2.	Define power and energy.	1	R
3.	Three resistances are connected in series. Find the total resistance.	1	An
4.	Define form factor	2	U
5.	Define inductance	2	U
6.	What is transformer?	2	R
7.	Write and 3 difference between slip ring squirrel cage motor	3	R
8.	Write the application of capacitor start induction motor.	3	R
9.	What is universal motor?	3	U
10.	Explain the types of regulators	4	U
11.	Write the advantage and disadvantages of Inverters	4	R
12.	Explain De morgan's second law with an example	4	Ар
13.	What is important earthing?	5	U
14.	What is megger?	5	U
15.	Write the application of PLC.	5	U

S.No		<u>PART –B</u> wer all the questions choosing either sub division(A) subdivision (B) of each questionsAll questions carry equal marks (5x14=70)	UNIT	Bloom's level
	A. 1	Briefly explain the types of DC generator. (7)	1	U
16	A. 2	Derive and expression for 3 resistance are connected in parallel and also find total resistance.(7) (OR)	1	An
	B. 1	State and explain Kirchoff's law (7)	1	U
	B. 2	Draw and explain the basic structrue of power generation. (7)	1	U
	A. 1	Explain the construction, working principle of transformer with neat sketch(7)	2	U
	A. 2	Explain the construction of Dc motor with a neat diagram (7)	2	U
17		(OR)		
	B. 1	Explain the working principle of 3 point starter with a neat sketch (7)	2	U
	B. 2	n the construction of DC generator.(7)	2	U
	A. 1	Explain the construction and working principal of synchronous motor(7)	3	U
	A. 2	Explain the construction and working of Capacitor start induction motor.(7)	3	U
18		(OR)		
	B. 1	Explain working principle of three phase induction motor.(7)	3	U
	B. 2	Explain the working principle of universal motors.(7)	3	U

	A. 1	Explain the working of PN junction diode.(7)	4	U
	A. 2	Explain the construction and working LCD(7)	4	U
19		(OR)		
	B. 1	Design AND,OR,NOT and EX-OR gate using NOR only(7)	4	U
	B. 2	Draw and explain the full wave rectifier.(7)	4	U
	A. 1	Explain the working principle of PMMC instruments(7)	5	U
	A. 2	What is electric shock? First aid and precautions causes of accident and their preventive measures.(7)	5	U
20		(OR)		
	B. 1	Draw and explain block diagram of CRO(7)	5	U
	B. 2	Draw and explainblock diagram of PLC (7)	5	U

Note: Board Examinations will be conducted for 100 Marks and converted to 75 Marks.

5F3301 - PULP & PAPER TECHNOLOGY I

Programme Name	:	5F3301-DIPLOMA IN PAPER TECHNOLOGY
Course Code	:	5F3301
Term	:	III
Course Name	:	PULP & PAPER TECHNOLOGY – I

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	Instructions Examination				
Course	Hours Hours					
	/ Week	/ Term	Internal Autonomous Assessment Examination		Total	Duration
PULP & PAPER TECHNOLOGY – I	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	History of Paper Making & types of Raw material	15
II	Processing of wood	15
	Non wood plant fibers & Pulping process	14
IV	Stock preparation & it's equipments	15
V	Non Fibrous Materials in stock preparation	14
	Test & Model Exam	7
	Total	80

RATIONALE

Students will be given the idea of various processes to convert raw material to pulp. The status of Indian industries in relation to pulp making should be imparted to them. The use of pulp for various types of papermaking should also be emphasized **OBJECTIVES**

After the completion of this course, the student will be able to know about Classification of fibrous raw material

- Morphological analysis of fiber
- > Brief description of cellulose, hemi cellulose, lignin and extractives
- > Brief study of debarking types of screens
- > How to prepare stock for paper making.
- Different types of Sizing & Dyes.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
CO1	Understanding the classification of carbohydrates & cellulose structure	U
CO2	Understanding the manufacturing methods of chemical additives used in paper industry	U
CO3	Able to differentiate & application of various dyes	Α
CO4	Understanding the structure & Reaction of lignin	Α
CO5	Able to understand the preparation & properties of fatty acids, Formaldehyde	R

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

				_	-				
со		Program Outcomes (PO)						Program Specific Outcomes (PSO)	
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation									
Strong – S / 3			Mediu	m – M /	2		Weak	- W / 1	

Course-PO Attainment Matrix

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO.

- If <u>>40%</u> of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3
- If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2
- If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1
- If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

DETAILED SYLLABUS

	Contents:	Theory
--	-----------	--------

Unit	Name of the	Time
	Topics	
1	HISTORY OF PAPER MAKING & TYPES OF RAW MATERIAL Chapter 1.1 - Historical development of pulping and papermaking process. A simple Block diagram outlining the stage of process in integrated pulp and paper industry. Fibrous raw materials – Introduction – Selection Criteria of fibrous raw materials – A note on L/D ratio – Classification of fibrous raw materials including the classification of vegetable fibers with one example for each and a brief description of them – Chemistry of materials with special reference to wood.	15
II	PROCESSING OF WOOD	
	 Chapter 2.1 - Fiber morphology with a simple sketch and a brief note an cell-walls – A note on Wood procurement, receiving and measurement-Debarking and its importance Chapter 2.2 - Acceptable chip size – Rechipper Concept of oven dry and air dry raw materials including simple problems – Difference between hardwood and softwoods – Usage of these woods in different paper making – Wood Pulping line 	15
	NON WOOD PLANT FIBERS & PULPING PROCESS	
	 Chapter 3.1 - The growth and fiber values of bamboo, bagasse, straws, grasses, jute coir, cotton, Kenaf and Banana – A short note on hemicelluloses in papermaking. Chapter 3.2 - General principles of pulping – General classification of pulping processes – principles of mechanical and chemical pulping processes (an introductory treatment only) – Their merits and demerits – An introduction to soda and sulphate processes only – Sulphate process description in detail – RDH – Super Batch pulping process – OCC line 	14
IV	STOCK PREPARATION & IT'S EQUIPMENTS	
	Chapter 4.1 - Introduction – Basic principles of stock preparation systems – The concept of consistency and simple problems on consistency involving stock blending – Important operations of stock preparation – Theory of beating (a description with the sketch of cellulose fiber) – Refinig Vs strength properties – A simple sketch of conical and disc refiners and their functions in brief – Effect of refining on sheet properties Chapter 4.2 - White water and its reclamation – Save-all – Cleaning of stock (ahead of paper machine) – Centrifugal separation – Pulpers	15
	Chapter 4.3 - Introduction and principles - Method of sizing -	

	Factors affecting sizing –Chemistry of sizing process – Alumina Theory and Co-ordinate valences theory – Description of chemicals with reference to rosin, alum, waxes and rosin. Alkaline sizing with ASA – Surface sizing.	
V	NON FIBROUS MATERIALS IN STOCK PREPARATION	
	Chapter 5.1 - Principles – Fillers and paper properties- Paper fillers	
	and their brief description - Production of fillers - Retention and	
	effects of fillers – Theories of retention – Two sidedness of paper.	
	Chapter 5.2 - Method of adding dyes - Mechanism of paper	14
	dyeing – Factors affecting stock dye.	
	Chapter 5.3 - Technical calculations for pulp mill - O.D Weight -	
	Tank capacity – Pipe size – Centricleaner calculation Screening	
	calculation – Washing loss & Bleaching Calculation.	

Reference Books

- 1 Hand book of pulp and paper technology, Kenneth W. Britt, CBS Publishers
- 2 pulp and paper volume I and II, James P. Casey, Academic Press
- 3 Pulping process, Sven A. Rydholm, Inter science publisher
- 4 Pulp and paper Manufacture I and II, Ronald G Macdonald, Wiley & Sons
- 5 Hand book of paper & Board, Herbert Holik (Editor), Wiley publishers

OUTCOMES for After Completion the Course:

Course Delivery

The course will be delivered through lectures and Power point presentations/ Video **Course Assessment and Evaluation Scheme**

		r			- · ·	-	
Method	What	То	When/Where	Max	Evidence	Course	
		whom	(Frequency in	Marks	collected	outcomes	
			the course)				
	CAT		Three CAT				
			tests (Average	20	CAT Answer		
			of three tests			1 to 5	
			will be		Scripts		
ent			computed)				
L S S			Student	05	Activity	1 to 5	
ses			activities	05	Reports		
t As			Total	25			
Direct Assessment	End	<i>(</i>)	End of the	100	Answer	1 to 5	
	Exam	Students	course	100	scripts at AE		
	Student	nde	Middle of the		Feedback forms	1,2,3	
	Feedback	St	course			Delivery of	
	on course					101115	course
	End of		End of the			1 to 6	
ent	Course		course			Effectivene	
sm	Survey					ss of	
ses					Questionnair	Delivery of	
As:					es	instruction	
act						s &	
Indirect Assessment						Assessme	
						nt Methods	

Note: Internal Assessment (CAT) test shall be conducted for 50 marks. Average marks of three tests shall be rounded off to the next higher digit.

Questions for CAT and AE will be designed to evaluate the various educational components (Bloom's taxonomy) such as:

SI.	Bloom's Category	%
1	Remembrance	
2	Understanding	
3	Application	

Note to Internal Assessment verifier: The following documents to be verified by CIE verifier at the end of semester

- 7. CAT Answer Scripts (20 marks)
- 8. Student suggested activities(assignments) report for 5 marks
- 9. Student feedback on course regarding Effectiveness of Delivery of instructions & Assessment Methods.

Autonomous Examination-Question Paper Pattern

Time: 3 Hrs. Max.Marks:100

Model question paper YEAR/SEM : II/III MAX MARKS: 100 Part A

Q.No	Answer the 10 questions out of the 15 questions. All questions carry equal marks (10x3=30)	UNIT	Bloom's level
1.	Mention some fibrous raw material for paper making.	1	(R)
2.	Define L/D ratio.	1	(R)
3.	Describe about lignin.	1	(U)
4.	Define Debarking.	2	(R)
5.	Sketch Fiber morphology.	2	(R)
6.	Describe about rechipper.	2	(U)
7.	Describe the uses of grasses in pulping industry.	3	(U)
8.	Describe the principle of pulping.	3	(U)
9.	Describe about super batch.	3	(U)
10.	Describe the theory of beating.	4	(U)
11.	Define refining.	4	(R)
12.	Define sizing.	4	(R)
13.	Define two sidedness of paper.	5	(R)
14.	Define retention	5	(R)
15.	Mention some types of dyes employed in paper industry.	5	(R)

Q. No	div	<u>PART –B</u> Answer all the questions choosing either sub /ision(A) or subdivision (B) of each questions. All questions carry equal marks (5x14=70)		Bloom' s level
	A. 1	Write about the classification of fibrous raw materials.	1	(U)
	A. 2	Give details about any three fibrous raw materials.	1	(U)
16		(or)		
10	B. 1	Draw the outline of paper making process from raw material handling.	1	(A)
	B. 2	Define H – factor.	1	(R)
	A. 1	Explain in detail about the fiber morphology.	2	(R)
	A. 2	Mention some methods for debarking.	2	(U)
17		(or)		
	B. 1	Differentiate Hardwood and softwood.	2	(U)
	B. 2	Mention the usage of Rechipper.	2	(U)
	A. 1	Write short notes on Hemicellulose.	3	(R)
	A. 2	Write about Bagasse & Bamboo	3	(R)
18		(or)		
	B. 1	Mention the classification of Pulping process.	3	(U)
	B. 2	Differentiate Mechanical & Chemical pulping process	3	(U)
	A. 1	Define refining equipments in detail.	4	(R)
	A. 2	Mention some effects of refining on sheet properties.	4	(U)
19		(or)		
	B. 1	Write about white water reclamation in Paper machine.	4	(R)
	B. 2	Define alkaline sizing.	4	(R)

	A. 1	Write in detail about the fillers and their effects on paper making	5	(R)	
	A. 2	Define Consistency, Gsm,Gpl.	5	(R)	
20		(or)			
	B. 1	Write the mechanism involved in dyeing of paper.	5	(R)	
	B. 2	Mention the factors affecting stock dye.	5	(U)	

Note: Board Examinations will be conducted for 100 Marks and converted to 75 Marks.

5F3401 - PLANT ENGINEERING MANAGEMENT & ENVIRONMENTAL ENGINEERING

Programme Name	:	5F3401 - DIPLOMA IN PAPER TECHNOLOGY
Course Code	:	5F3401
Term	:	III
Course Name	:	PLANT ENGINEERING MANAGEMENT &
		ENVIRONMENTAL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination				
Course	Hours	Hours / Term					
	/ Week		Internal Assessment	Autonomous Examination	Total	Duration	
PLANT ENGINEERING MANAGEMENT & ENVIRONMENT AL ENGINEERING	5	80	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.		
I	PRINCIPLES OF MANAGEMENT	15		
	ORGANISATION AND QUALITY CONTROL	14		
III	MARKETING FUNCTIONS, INDUSTRIAL RELATIONS AND SAFETY	15		
IV	AIR POLLUTION & NOISE POLLUTION	14		
V	WATER POLLUTION & LAND POLLUTION	15		
Test & Model Exam				
Total				

RATIONALE

Most of the chemical engineering operations will involve principles of management, organization and quality control marketing function, industrial relations, safety environmental management and disaster management.

OBJECTIVES

At the end of this course, students will be able to

- > To understand the different types of ownership in industry
- > To understand the scientific management
- > To organize the different activities of the plant
- > To develop the traits required for entrepreneur
- > To select the plant location and product
- To acquire better knowledge about decision making and communication
- > To understand the important factors of production planning control
- > To carryout suitable effective methods for inventory control
- > To maintain good quality control
- > To understand the various quality certification schemes
- To understand the different marketing techniques
- > To promote the products with effective methods
- > To select the suitable advertising techniques
- > To understand the different factory acts for employee welfare
- > To appraise the safety performance
- > To understand the importance of pollution control
- To analyze the impact of pollution
- > To select the suitable solid waste treatment techniques
- To understand various treatments and disposal methods for waste water
- > To choose the suitable air pollution control methods

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
CO1	Identify the principle of management & plant maintenance	R
CO2	Understand what is planning, arrangement and coordination, quality and how it is maintain in good quality of the product	Α
CO3	Understand the marketing and sales of our products and maintain relation between the employer and employee	Α
CO4	Know about the standard terms and their controlling methods of Air pollution & Noise pollution	Α
CO5	Know about the standard terms and their controlling methods of water pollution & land pollution	Α

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

Course-PO Attainment Matrix									
со	Program Outcomes (PO)					Program Specific Outcomes (PSO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation	Correlation								
Strong – S / 3			Mediu	m – M /	2		Weak	- W / 1	

Course-PO Attainment Matrix

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO.

- If <u>>40%</u> of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3
- If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2
- If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1
- If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Time
	PRINCIPLES OF MANAGEMENT	
	Chapter 1.1 - Role of industry –Types of ownership- Proprietorship, partnership-Private limited –Public limited – Industrial co- operatives	
I	 Chapter 1.2 - Scientific management –Functions of management –Types of organization –line-staff-functional organization – concept and Definition Chapter 1.3 - Product selection –Site selection – Principles of plant layout – Factors influencing plant location. 	15
	ORGANISATION AND QUALITY CONTROL	
I	Chapter 2.1 - Leadership in organization –Decision making – Communication –Motivation –Group dynamics – Production planning and control –Need for planning – Routing –Scheduling – Dispatching Chapter 2.2 - PERT –CPM – Inventory control –ABC analysis of safety stock –EOQ method – Purchasing procedures –Records – Bin cards Chapter 2.3 - Quality control –Basic concepts –Definition – Terminology – Presentation of data –Indian standards on quality control technique –Quality certification schemes –ISO 9000 etc.	14
111	MARKETING FUNCTIONS, INDUSTRIAL RELATIONS AND SAFETY Chapter 3.1 - Marketing –Definition –Information –Functions – Pricing policy –Pricing techniques - Sales –Definition –Personal selling –Promotion mix – Advertising –Sales packaging – Promotion techniques Chapter 3.2 - Trade unions –Disputes –Settlement –Collective bargaining –Welfare concepts –Rights and responsibilities of employer and employee –Factories act 1948 –Industrial dispute act 1947 – Trade unions act - 1926 –ESI act 1948 –Child labour act Chapter 3.3 - Process safety –Hazard analysis –Risk analysis – Common causes of accidents –Safety training –Electrical hazard – Fire hazard –Explosion hazard –First aid.	15

		1
IV	 AIR POLLUTION & NOISE POLLUTION Chapter 4.1 - Pollution control Standards for air Sources of air pollution- Effects of air pollution on Environment, materials, human health and animals- Equipments for control of air pollutants as applicable to pulp and paper industries namely Dust collectors, Cyclone separators, Venturi scrubbers and Electrical precipitators Chapter 4.2 - Definition of Noise pollution – Sources of noise pollution – Noise control criteria – Noise exposure index – Control of noise pollution – Source of odour as applied to paper mill and its control. Ozone layer depletion, Acid rain , Global warming and Green house gas effect 	14
V	 WATER POLLUTION & LAND POLLUTION Chapter 5.1 - Definition of water pollution Sources of water- Hardness of water- raw water clarification Filtration – Water treatment by lime-soda process and ion-exchange process- Ultra filtration and reverse osmosis – pollution control standards for water Sources of water pollution – Their effects on environment and materials – Recycle and reuse – Water conservation methods – BOD and COD – Their measurement. Chapter 5.2 - Definition of Land pollution – Sources and classification of solid wastes – Solid wastes generated from various units of paper mill –Their disposal and treatment. 	15

Reference Books

- 1 Managing Quality, Dale and pluniket, Wiley Blackwell
- 2 Industrial engineering and management, K. Balasundaram, Sri Ramalinga sowdeswari Publication
- 3 Industrial engineering and management, By O.P. Khanna, Dhanpatrai & Co
- 4 Pollution control and chemical recovery in pulp and paper industry, H.R.Jones (Noyes data corporation), Pittman publishing Limited
- 5 Air pollution and industry, R.D. Rose Engg. , Rose Environmental Inc
- 6 Chem. Tech. Vol I, Edn. Devel I.I.T, IIT Chennai

OUTCOMES for After Completion the Course:

Course Delivery

The course will be delivered through lectures and Power point presentations/ Video **Course Assessment and Evaluation Scheme**

						-
Method	What	То	When/Where	Max	Evidence	Course
		whom	(Frequency in	Marks	collected	outcomes
			the course)			
	CAT		Three CAT			
			tests (Average		CAT Answer	
			of three tests	20		1 to 5
			will be		Scripts	
ent			computed)			
- us			Student	05	Activity	4.1.5
ses			activities	05	Reports	1 to 5
Direct Assessment			Total	25		
Lec	End		End of the	100	Answer	1 to 5
Ō	Exam	Students	course	100	scripts at AE	1 to 5
	Student	nde	Middle of the		Feedback forms	1,2,3
	Feedback	Sti	course			Delivery of
	on course					course
	End of		End of the			1 to 6
ent	Course		course			Effectivene
- S	Survey					ss of
ses					Questionnair	Delivery of
Indirect Assessment					es	instruction
get						s &
dire						Assessme
Ĕ						nt Methods

Note: Internal Assessment (CAT) test shall be conducted for 50 marks. Average marks of three tests shall be rounded off to the next higher digit.

Questions for CAT and AE will be designed to evaluate the various educational components (Bloom's taxonomy) such as:

SI.	Bloom's Category	%
1	Remembrance	
2	Understanding	
3	Application	

Note to Internal Assessment verifier. The following documents to be verified by CIE verifier at the end of semester

- 10. CAT Answer Scripts (20 marks)
- 11. Student suggested activities(assignments) report for 5 marks
- 12. Student feedback on course regarding Effectiveness of Delivery of instructions & Assessment Methods.

Autonomous Examination-Question Paper Pattern

Time: 3 Hrs. Max.Marks:100

Model question paper YEAR/SEM : II/III MAX MARKS: 100 Part A

Q.No	Answer the 10 questions out of the 15 questions. All questions carry equal marks (10x3=30)	UNIT	Bloom's level
1.	What is the Role of industry	1	(R)
2.	How would you classify the type of types of ownerships?	1	(U)
3.	List the objectives of Planning.	1	(R)
4.	Define the Importance of leadership.	2	(R)
5.	Describe Economic Order Quantity. (EOQ).	2	(U)
6.	Explain Quality Control.	2	(U)
7.	Explain Marketing.	3	(U)
8.	Can you list six commonly used advertising media?	3	(An)
9.	List some methods for Prevention of Industrial Disputes:	3	(R)
10.	Write some source of air pollution	4	(U)
11.	Define Noise Pollution	4	(R)
12.	Write about global warming	4	(U)
13.	Write some sources of water.	5	(U)
14.	What is meant by hardness in water	5	(R)
15.	List out some sources for Landfills or solid wastes	5	(R)

Q. No		<u>PART –B</u> wer all the questions choosing either sub division(A) ubdivision (B) of each questions. All questions carry equal marks (5x14=70)			Bloom' s level
	A. 1	Discuss in detail about the types of ownerships.	1	8	(An)
	A. 2	Mention the difference between Public & Private limited company.	1	6	(U)
16		(Or)			
	B. 1	Write down the factors for site selection?	1	8	(U)
	B. 2	Write briefly about the Plant layout.	1	6	(U)
	A. 1	Explain Programme Evaluation And Review Technique (PERT).	2	8	(U)
	A. 2	Discuss Economic Order Quantity (EOQ).	2	6	(An)
17		(Or)			
	B. 1	Discuss about Indian Standards on Quality systems.	2	8	(An)
	B. 2	Demonstrate Terminology in quality control.	2	6	(U)
		What facts can you compile for Sottlement of Industrial			

	A. 1	What facts can you compile for Settlement of Industrial Disputes?	3	8	(C)
	A. 2	Discuss about Right and responsibilities of Employer & Employee.	3	6	(An)
18		(Or)			
	B. 1	Summarize Factories Act 1948.	3	8	(U)
	B. 2	Describe CHILD LABOUR ACT.	3	6	(U)

	A. 1	Write in detail about the effects of air pollution	4	8	(U)
	A. 2	Write about the equipments employed in paper industry for controlling air pollution	4	6	(U)
19		(Or)			
	B. 1	Write about Ozone layer depletion, Global warming& Green house effect.	4	8	(U)
	B. 2	Write in detail about the sources of noise pollution in a paper industry.	4	6	(U)
	A. 1	Write in detail about the Ultra filtration and reverse osmosis.	5	8	(U)
	A. 2	Write in detail about the need of water conservation.	5	6	(U)
20		(Or)			
	B. 1	Write in detail about the Solid wastes generated from various units of paper.	5	8	(U)
	B. 2	Mention some Sources and classification of solid wastes.	5	6	(R)

Note: Board Examinations will be conducted for 100 Marks and converted to 75 Marks.

5F3207 - GENERAL ENGINEERING PRACTICAL

Programme Name	:	5F3207-DIPLOMA IN PAPER TECHNOLOGY
Course Code	:	5F3207
Term	:	III
Course Name	:	GENERAL ENGINEERING PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination				
Course	Hours Hours / Week / Term						
			Internal Autonomous Assessment Examination		Total	Duration	
GENERAL ENGINEERING PRACTICAL	4	64	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

The knowledge of fluid flow is very essential because all chemical plants have fluid flow. The examples are flow of stream and gases in pipes, flow of liquid in pipes and open channels etc., this subject aims at the basic concepts of fluid flow, measurement techniques involved for the same and equipments used for the transportation of fluids. With this background, students will be able to quantitatively find out material and power requirement for a process.

OBJECTIVES

After the completion of this course, the student should be able to construct and test

- To conduct flow experiments in orifice and venture and to determine the coefficient of discharge.
- > Determination of the friction factor in pipe friction experimental setup
- Determination of performance characteristics of a Centrifugal pump and volumetric efficiency of a compressor

Course Outcomes:

	Course outcome	BTL
CO1	Conduct flow experiments and find coefficient of discharge in flow meter & Pipe friction	Α
CO2	Determine the performance characteristics of Centrifugal & Reciprocating pump	Α
CO3	Determine the performance characteristics & volumetric efficiency of a compressor	Α
CO4	Measure the load on given single phase transformer & single phase induction motor	Α
CO5	Understand the characteristics of PN junction diode, Transistor, Photo diode & thermistor	Α

Mapping Course Outcomes (CO) - Program Outcomes (PO)

СО		Program Outcomes (P				20)	Program Speci Outcomes (PS		-
	P01	PO2	PO3	PO4	PO5	PO6	P07	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation									
Strong – S / 3			Medium – M /2			Weak – W / 1			

DETAILED SYLLABUS

Contents: Practical Name of the Topics:

Exercise

- 1. Determination of Orifice Co-Efficient.
- 2. Determination of Venturi Co-Efficient.
- 3. Determination of Pipe Friction
- 4. Compressor Test Rig.
- 5. Centrifugal Pump Characteristics
- 6. Reciprocating Pump Characteristics
- 7. Determination of Unknown Resistance by ohms law
- 8. Power measurement in a single phase circuit.
- 9. Load test on a single phase transformer
- 10. Characteristics of PN Junction Diode
- 11. Construction of Bridge Rectifier
- 12. Verification of Logic Gates

Experiment Plan:

Module	Week	Experiments Name	Course	Weight
No.	No.		Outcome	age
1.	3	Determination of Orifice Co-Efficient.		
2.	5	Determination of Venturi Co-Efficient.		
3.	7	Determination of Pipe Friction		
4.	9	Compressor Test Rig.		
5.	11	Centrifugal Pump Characteristics		
6.	13	Reciprocating Pump Characteristics		
7.	3	Determination of Unknown Resistance by ohms		
		law		
8.	5	Power measurement in a single phase circuit.		
9.	7	Load test on a single phase transformer		
10.	9	Characteristics of PN Junction Diode		
11.	11	Construction of Bridge Rectifier		
12.	13	Verification of Logic Gates		

0			Marks		
SI. No. Rubrics (Sample)		High 5-4	Medium 3-2	Low 1-0	
		Conduction of expe	eriment		
1.	Equipments Handling	Proper way of handling the equipments & tools.	Minimal handling of the equipments & tools.	unable to handling the equipments & tools	
2.	Observation	Step by step procedure followed to take correct readings.	Some steps are followed correct sequence & error to take readings	Steps are not followed to take readings and not showing interest to rectify the mistakes.	
3.	Presentation of results	Accurate results & neatly presented	Minor mistakes in results and neatly presented,	Major mistakes & Incomplete results.	
4	Viva	Almost all the questions are answered.	Partially answered.	Unable to answer.	
5	Promptness	The experiment is completed on time. Observation/Record note is submitted on time.	The experiment is completed on time but the Observation / Record note is not submitted on time.	The experiment is not completed on time. Observation / Record note is not submitted on time.	
	Mark Allocation	35 - 25	25 - 10	10 - 0	

AUTONOMOUS EXAMINATION

Note:

DETAILLED ALLOCATION OF MARKS

SCHEME OF EVALUATION					
Aim & Procedure	15				
Tabulation & Readings /Circuit Diagram	35				
Calculations	35				
Result & Graph	10				
Viva	05				
Total	100				

5F3302 - PULP TECHNOLOGY LABORATORY

Programme Name	:	5F3302-DIPLOMA IN PAPER TECHNOLOGY
Course Code	:	5F3302
Term	:	III
Course Name	:	PULP TECHNOLOGY LABORATORY

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions		Examination		
Course	Hours Hours / Week / Term					
			Internal Assessment	Autonomous Examination	Total	Duration
PULP TECHNOLOGY 4 64 LABORATORY		25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

Students will be given the idea of various processes to convert raw material to pulp. The status of Indian industries in relation to papermaking should be imparted to them. The use of pulp for various types of papermaking should also be emphasized **OBJECTIVE**

After the completion of this course, the student should be able

- > To analysis the cooking liquors and bleach liquor concentration.
- > To analysis pulp freeness after refining
- > To check the ash and moisture content of pulp
- > To check the kappa number of pulp
- > To make a hand sheet and checking the brightness & strength properties
- > To measure the alkali loss in the washed pulp
- > To study the post color number of given pulp
- > To study the Effluent analysis from pulp mill.

Course Outcomes:

	Course outcome	BTL
CO1	Able to analyze the content of White liquor, Bleaching Liquor, &	R
	Effluent from Pulp mill	
CO2	Able to measure the freeness of pulp	Α
CO3	Able to check moisture, ash & washing loss in pulp	Α
CO4	Able to check kappa number in pulp	Α
CO5	Know how to make how to make hand sheets	U

Mapping Course Outcomes (CO) - Program Outcomes (PO)

СО		Program Outcomes (PO)					Program Specific Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation									
Strong – S / 3			Medium – M /2			Weak – W / 1			

DETAILED SYLLABUS

Contents: Practical Name of the Topics: Exercise

- 1. Analysis of cooking liquors
- 2. Freeness of pulps (CSF)
- 3. Ash and moisture content of pulp
- 4. Permanganate number / Kappa number of pulps
- 5. Analysis of Bleach liquor
- 6. Hand sheet making and brightness of pulp
- 7. Residual alkali in washed pulp (washing loss)
- 8. Effluent analysis from Pulp mill outlet

Experiment Plan:

Module	Week	Experiments Name	Course	Weight
No.	No.		Outcome	age
	3	Analysis of cooking liquors		
	4	Freeness of pulps (CSF)		
	5	Ash and moisture content of pulp		
	6	Analysis of Bleach liquor		
	8	Hand sheet making and brightness of pulp		
	9	Residual alkali in washed pulp (washing		
		loss)		
	10	Effluent analysis from Pulp mill outlet		
	11	Permanganate number / Kappa number of		
		pulps		

		Lab Assessme	ent					
SI.			Marks					
No.	Rubrics (Sample)	High 5-4	Medium 3-2	Low 1-0				
	Cor	nduction of experime	nt (Software)					
1.	Equipments & Sample Handling	Proper, Safest way of Chemical, Equipment Handling & Usage of PPE	Minimum usage of Proper , Safest way to Chemical, Equipment Handling & Usage of PPE	Safe less & Easiest way of Chemical, Equipment Handling without using PPE				
2.	Observation & Calculation	All the steps are followed correctly, sequence of Chemical addition & way of titration	Some steps are followed correctly, sequence of Chemical addition & way of titration	Steps are not followed correctly, sequence of Chemical addition & way of titration				
3.	Presentation of results	Accurate results & Calculation. Neatly presented	Complete and neatly presented, Minor mistakes in Result & Calculation	Incomplete results, Mistakes in Calculation Sequence				
4	Viva	Almost all the questions are answered.	Partially answered	Unable to answer.				
5	Promptness	The experiment is Completed on time. Observation/Record note is submitted on time	The experiment is completed on time but the Observation / Record note is not submitted on time.	The experiment is not completed on time. Observation / Record note is not submitted on time.				
	Mark Allocation	25-20	15-10	5-0				

AUTONOMOUS EXAMINATION

Note:

DETAILLED ALLOCATION OF MARKS

SCHEME OF EVALUATION					
Aim & Procedure	15				
Tabulation & Readings	35				
Calculations	35				
Result & Graph	10				
Viva	05				
Total	100				

Autonomous Examination-Question Paper Pattern <u>MODEL QUESTION PAPER</u> <u>LIST OF EQUIPMENTS</u> LIST OF GLASS WARES AND EQUIPMENTS

- Burette 50 ml
- Pipette 5 ml, 10ml, 25ml, 50 ml
- Conical flask 250 ml
- Standard flask 250 ml
- Burette stand with clamp
- Funnels
- Wash bottle
- Buchner funnel
- Canadian standard freeness tester
- Porcelain crucible, Muffle Furnace or Ash Incinerator and Air oven
- Mechanical stirrer
- Hand sheet making unit, Rapid sheet dryer and Brightness tester
- Vacuum pump and filtration setup
- P^H Meter, silica dish and Hot plate

5F4303 - PULPING OPERATION, ELECTRICAL & MECHANICAL MAINTENANCE

Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY
Course Code	:	5F4303
Term	:	IV
Course Name	:	PULPING OPERATION, ELECTRICAL & MECHANICAL
		MAINTENANCE

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Course	Instru	ctions	Examination					
	Hours	Hours						
	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total	Duration		
PULPING OPERATION, ELECTRICAL & MECHANICAL MAINTENANCE	24	576	25	100*	100	3 Hrs.		

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

The basic idea of washing, screening, cleaning and bleaching given to the students with an aim to reduce pollution load on one side and energy and chemical recovery on the other in order to get a clean and bright pulp. The technological overview based on block diagram should only be emphasized ideas of emission from bleach plant should be given.

OBJECTIVES

At the end of this course, students will be able to

- ➢ Know various pulping and methods, general principle and objectives of washing
- ➤ Know the method of washing and types
- Know the washing principle and construction of brown stock washer, description of multistage washer, operating procedure including start up and shut down
- ➤ Know the variables affecting efficiencies, production rate, loading factors
- Know the screening procedure and methods. Variables affecting the screen performance
- Know the bleaching principle and its operations
- > Know the all unit operations and their electrical and mechanical maintenance system

By the end of in plant training the students will get

- Hands on training in pulping operations
- > Thorough knowledge of conversion of raw materials in to pulp
- Knowledge about cooking operations of raw materials
- ➢ Knowledge about chip & liquor filling into digester

Course Outcomes:

	Course outcome	BTL
CO1	Understand various pulping operation	Ар
CO2	Understand conversion of raw materials into pulp	Ар
CO3	Understand cooking operation & cooking conditions of different raw materials	Ар
CO4	Understand all the Unit operation, Electrical maintenance & Mechanical maintenance	Ар
CO5	Understand various washing & bleaching methods and their parameters	Ар

Mapping Course Outcomes (CO) - Program Outcomes (PO)

СО		Pr	ogram	Program Specific Outcomes (PSO)					
	P01	PO2	PO3	PO4	PO5	PO6	P07	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation	Correlation								
Strong – S / 3		Medium – M /2 Wea							

5F4304 - CHEMICAL RECOVERY OPERATION & MAINTENANCE

Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY
Course Code	:	5F4304
Term	:	IV
Course Name	:	CHEMICAL RECOVERY OPERATION & MAINTENANCE

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Course	Instru	ctions	Examination					
	Hours	Hours						
	/ Week / Term		Internal Assessment	Autonomous Examination	Total	Duration		
CHEMICAL RECOVERY OPERATION & MAINTENANCE	24	576	25	100*	100	3 Hrs.		

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

Chemical recovery plant is a part and parcel of any modern day paper mill. Chemical recovery plant aids in abating air and water pollution and its effects. The recovery and reuse of cooking chemicals to the extent of 90% and utilize.

OBJECTIVES

Student will be able to Know

- Learn pollution and its effects
- Know about energy saving system using heat boiler
- > Know the variables affecting the environment and their abatement
- Recovery and reuse of cooking chemicals
- > To learn operating procedure and maintenance
- > To reduce emission from recovery boiler & ESP operation and maintanace

After the in plant training is over the students will be able to understand

- ➢ How the black liquor is converted into white liquor
- ➢ How heat is recovered from recovery boiler
- > Thorough knowledge about settling & Clarifier process.

Course Outcomes:

	Course outcome	BTL
CO1	Understand the conversion process of black liquor to white liquor	U
CO2	Understand the various process step involves in the evaporators	U
CO3	Understand the recovery of Heat & white liquor chemicals in recovery boiler	U
CO4	Understand the process and process parameters of Causticizer & Lime Kiln	U
CO5	Understand all the Unit operation, & Mechanical maintenance in recovery process	U

Mapping Course Outcomes (CO) - Program Outcomes (PO)

СО		Pr	ogram		Program Specific Outcomes (PSO)				
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation	Correlation								
Strong – S / 3		Medium – M /2 Weak – W /							

5F0005 - CONCURRENT CAREER DEVELOPMENT

 Programme Name : DIPLOMA IN PAPER TECHNOLOGY

 Course Code
 : 5F0005

 Term
 : IV

 Course Name
 : Concurrent Career Development

 TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Course	Instru	ctions	Examination					
	Hours Hours - / Week / Term							
			Internal Assessment	Autonomous Examination	Total	Duration		
Concurrent Career Development	5	80	25	100*	100	3 Hrs.		

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.				
I	National Integration And Awareness	15				
II	Social Awareness And Community Development	15				
III	Health And Hygiene	15				
IV	Environmental Awareness And Conservation	14				
V	Traffic Control Organization	14				
	Test & Model Exam					
	Total					

OBJECTIVES:

- 1. To promote harmony and the spirit of common brotherhood amongst all the people of the country. To safe guard public property and abjure violence.
- 2. To develop the idea of ability and better thinking to work for the betterment of community.
- 3. To prevent illness and have positive health attitude, correct and complete knowledge of health is necessary.
- 4. To develop a world population that is aware of, and concerned about, the environmental and its associated problems
- 5. To provide for the safe, rapid, comfortable efficient, convenient, and environmentally compatible movement of people, goods, and services.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
CO1	Students to know the responsibility to see that injustice, inequality, oppression; exploitation, corruption, misuse of public money etc. are done away with. Students play a vital role in the society. They are the guardians of freedom, Justice, equality, ethics and social equilibrium.	U
CO2	To understand social and ethical norms for behavior, and to recognize family, school, and community resources and supports.	U
CO3	Students have the knowledge or skills to develop good personal hygiene habits on their own.	U
CO4	To understand the fragility of our environment and the importance of its protection.	U
CO5	The students will get a vast understanding on various traffic enforcements rules and regulations.	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

Mapping Course Outcomes (CO) - Program Outcomes (PO)									
со		Progr	Program Specific Outcomes (PSO)						
	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PSO1	PSO2
CO1	2	2	1	2	-	-	-	-	-
CO2	2	2	1	2	-	-	-	-	-
CO3	2	2	1	2	-	-	-	-	-
CO4	2	2	1	2	-	-	-	-	-
CO5	2	2	1	2	-	-	-	-	-
TOTAL	10	10	5	10	-	-	-	-	-
No. of COs Mapping with POs	5	5	5	5	-	-	-	-	-
Average	2	2	1	2	-	-	-	-	-
Round off(Average)	2	2	1	2	-	-	-	-	-
Correlation	Correlation								
Strong – S / 3		Medi	um – I	M /2		We	ak – W	//1	

DETAILED SYLLABUS

Contents: Concurrent Career Development

Unit	Name of the Topics	Hours
Ι	NATIONAL INTEGRATION AND AWARENESS Introduction – Importance of National Integration – Essence of national integration : Cultural Integration, Economic Integration, Political Integration, Religious Integration, Social Integration- Necessity of National Integration : Maintenance of peace and harmony, Growth and development of the nation, Law and Order, Culture and religious development, dignity and self-respect, welfare and wellbeing of the people-Role of NCC in nation Building.	15
11	SOCIAL AWARENESS AND COMMUNITY DEVELOPMENT Need of social awareness – Types of Social Awareness : Empathy, Organizational awareness- Service – How to build Social Awareness – Aims of Social Awareness – Different Social Awareness Programmes – Aims of Community development – Different community awareness programmes	15
	HEALTH AND HYGIENE Introduction to the structure of the body – Personal hygiene – Food hygiene –water supply and its purification – Sanitisation – Waste Product / Refuse – Types of waste product – Sources of refuse – Collection and removal of refuse – Preventable diseases – Classification of disease – Preventive measures Yoga – Definition and meaning of Yoga-Principles of Yoga- Asana – Definition, Types, Benefits - Effect of various yogic practices on Respiratory and Circulatory system - Method of performing various asanas – Padmasana, Siddhasana, Gyan Muthra, Suryanamaskar. Physical and Mental health – Elements of good health – Objectives and scopes of health education – Characteristics of healthy mind, Measures to secure mental health	15
IV	ENVIRONMENTAL AWARENESS AND CONSERVATION Introduction- Human activities and the environment – Depletion and deterioration – Deforestation – Forest and wild life – Water Resources – Global Warming – Depletion of Ozone layer – Role of the NCC cadets towards the environment – Ecology – Definition and components Conservation of environment and ecology – Resource depletion – Resource pollution – Environmental damage – Environment, life and ecology – Conservation measures – Methods of managements and conservation of natural resources.	14

V TRAFFIC CONTROL ORGANIZATION	
Understanding Road Safety – Importance or road safety: Major	
causes of road accident – Role of Education sector in road safety	
- Role of general Community in road safety - Road Safety tips -	14
Safety Devices – Safe and Responsible driving : Getting ready to	14
drive before driving, Physical and mental alertness, Know your	
vehicle, Know your blind spots, Fasten Your seat belt, Turn on	
head lights at night and in poor light conditions – Driving License.	

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair State of development of the student, so participation in classroom discussions, etc. will be used in evaluation.

- Final marks = 25% of Assignment mark + 50% of Online exam mark (Proctored) + 25 % of External exam (proctored).
- Unproctored means candidate will be taking the exam from college.
- The overall pass percentage is 40%.

Reference Books

- 1. Cadet's Hand Book.
- 2. Public Health And Hygiene, Dr.Sudhar R.Wagh.
- 3. Question Answers Of Environment And Road Safety Awareness Kindle Edition By Brijesh Pathak (Author) .
- 4. Environment And Road By Naresh Kumar (Author).
- 5. Traffic Safety And Environment: Conflict Or Integration Author Links Open Overlay Panelburkhard E.Horn (Professor) A. Hh.Jansson.

5F5305 - PULP AND PAPER TECHNOLOGY II				
Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY.		
Course Code	:	5F5305		
Term	:	V		
Course Name	:	PULP AND PAPER TECHNOLOGY-II		

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination				
Course	Hours / Week	Hours / Term	Marks				
oourse			Internal Assessment	Autonomous Examination	Total	Duration	
Pulp And Paper Technology-II	5	20	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	Sulphate Pulping	15
II	Sulphite Pulping & Mechanical Pulping & Semi Chemical Pulping	14
III	Pulping and Pretreatment of Rags & Secondary fibre treatment	15
IV	Washing & Screening and Centric leaning	14
V	Bleaching	15
Test & Model Exam		
Total		

RATIONALE

The student will be given thorough knowledge of sulphate, sulphite, semi chemical pulping and rag pulping. The students will also get the knowledge of deinking, sheet formation and pressing etc.

OBJECTIVE

At the end of this course, students will be able to know about different pulping method and deinking

- > Chemical pulping (sulphate pulping) standard terms used
- Chemical composition of cooking liquor
- Sulphite pulping and semi chemical pulping
- preparation of cooking liquor
- Process variables
- Factors effecting sulphite pulping
- Characteristics of sulphite pulping
- Mechanical pulping:
- The history and development of papermaking, Type of paper making machine and the role of screening and cleaning operation before sheet formation, Role and control of consistency in papermaking approach Flow system & its significance.
- Head Box designs and development
- The operation of water Washing efficiency. Types of washing equipment. The screening introduction and principles.
- The aims of bleaching. The sequence of bleaching methods, the auxiliary equipments of bleaching

Course Outcome

On successful completion of the course, the students will be able to attain

below Course Outcome (CO):

	Course outcome	BTL
CO1	Understand the basic concepts, process steps & process parameters of sulphate pulping	R
CO2	Understand the basic concepts, process steps & process parameters Sulphite Pulping, Mechanical Pulping & Semi Chemical Pulping	Α
CO3	Understand the the basic concepts, process steps & process parameters pretreatment and pulping of rags and waste paper	Α
CO4	Understand the process of Washing & Screening and Centric Cleaning	Α
CO5	Understand the bleaching process and their sequences	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's

revised taxonomy Level)

Course-PO Attainment Matrix

СО	Program Outcomes (PO) Outcomes (PSO				-				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation									
Strong – S / 3			Mediu		2		Weak	x – W / 1	

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO.

- If <u>>40%</u> of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3
- If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2
- If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1
- If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	UNIT I: SULPHATE PULPING	
	Chapter 1.1 - Introduction to chemical pulping – Introduction to sulphate	
	pulping process – Advantages and disadvantage of sulphate pulping	
	Standard terms (Applicable only to pulping process) - Complete cooking	
	cycle of batch digester wit reference to stationary vertical digester -	
	Illustration of RDH/Super Batch process Uses of black liquor - Air	45
	pollution – Problems to calculate the volumes of WL and BL using bath	15
	ratio of a stationary digester - Chemical reactions in alkaline pulping-	
	Process variables in sulphate cooking : i) Amount of alkali (as effective	
	alkali) ii) Alkali Concentration iii) Sulphidity iv) Time and Temperature – H-	
	factor (a short note with definition only) - Equipments details : Digester	
	– Below tank – Preheater – Regenerators – Recuperators.	
	Chapter 2.1 - Outline of the process with block diagram - Sulphite	
	pulping - Raw material suitability - A table of difference between	
	sulphate and sulphite pulping – A qualitative treatment only on dissolving	
	grade pulping	
	Chapter 2.2 - Introduction to the types of mechanical pulping- A block	
	diagram and simple description of ground wood pulping process -	14
	Description of grinding with a neat diagram- Limitations of ground wood	14
	pulps	
	Chapter 2.3 - Principle and scope - Advantages of SC process -	
	Properties of SC pulps – A note on pulp yield –Types of SC process	
	– NSSC (bath process and typical cooking conditions) A note on α β	
	and <i>r</i> celluloses.	
	Chapter 3.1 - Properties and uses of rag pulps- A note on pulping of	
	cotton linters Chapter 3.2 - Process description with plant Diagram,	
	Deinking(wastepaper treatment)- Advantages and disadvantages of	
	deinked stock- A brief note on deinking chemicals-A qualitative account	15
	on deinking plant- Shrinkage and yield of Deinking- Properties and uses	
	of Deinked pulps.	

	Chapter 4.1 - Reasons for washing – Chemical losses substances removed during washing – Washing efficiency – Dilution factor and displacement ratio (Qualitative treatment only) – Types of washing equipments – Diagram and description of diffusion washer and rotary drum washer – A complete diagram of a typical three stage countercurrent washing system – Twin roll press – Operational factors affecting washing efficiency – A note on knotter – Unit operations in washing Chapter 4.2 - Introduction-Screening and principles – Nature of impurities – Important variables in screening – Cascading principle of centricleaners – A typical flow diagram of modern screening plant and its	14
V	description. Chapter 5.1 - Introduction and aims of bleaching – Bleaching chemicals	
V	 Chapter 5.1 - Introduction and aims of bleaching – Bleaching chemicals Principles of their chemical analysis – Bleach ability of pulps – Single stage and multistage bleaching – Chlorine water system and its significances in bleaching – Peroxide and Hydrosulphite bleaching – Chlorine-di-oxide treatment – Bleaching with a reducing agent – Introduction to Elemental chlorine-free bleaching process – Introduction to enzyme bleaching process – Chemical reactions in bleaching – Variables in bleaching – Bleaching equipments – Safety – Materials of construction. Chapter 5.2 - Auxiliary equipments – Oxygen bleaching of mechanical pulps – A flow diagram with description of CEH/CEHH sequence only 	15

Reference Books

1	Hand book of pulp and p	paper technology	Kenneth W. Britt	CBS
Publis	shers			
2	pulp and paper volume I	and II	James P. Case	эу
	Academic Press			
3	Pulping process	Sven A. Rydholm	Inter science p	ublisher
4	Pulp and paper Manufac	cture I and II	Ronald G Mac	donald
	Wiley & Sons			

		5F5208 - UNIT OPERATIONS
Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY.
Course Code	:	5F5208
Term	:	V
Course Name	:	UNIT OPERATIONS

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination					
Course	Hours Hours /Week /Term							
			Internal Assessment	Autonomous Examination	Total	Duration		
UNIT OPERATIONS	5	80	25	100*	100	3 Hrs.		

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	Size Reduction & Screening	15
	Conveying & Seperation of Matrials	14
III	Fundamentals of Heat Transfer	15
IV	Fundamentals of Heat Exchangers	14
V	Absorption, Humidification & Drying	15
	Test & Model Exam	7
	Total	80

RATIONALE

It gives the student the knowledge of working of individual mechanical operations and their significance in chemical industries. With this information student can control the operation of equipment and regulate production. good understanding about the heat transfer mechanisms such as conduction, convection and radiation. These methods can then be used for understanding the performances of heat transfer equipment used in almost all chemical and related industries. In mass transfer Leaching , extraction, gas absorption and stripping, humidification and drying concepts have been elaborately discussed.

OBJECTIVES

At the end of this course, students must be able to know

- > To understand important mass transfer operations and their applications.
- About the basic concepts about temperature, pressure.
- Size reduction
- About different size reduction equipment
- Characterization of solid particles
- Particle shape, particle size, mixed particle sizes and size analysis, expressions
- Different types of conveying equipment.
- Different types of centrifuge and difference between clarification and classification.
- Modes of Heat Transfer Conduction, Convection, Radiation, concept of steady state and unsteady state heat transfer Conduction. Fourier's law of heat conduction, thermal conductivity of materials and solids,
- Concept, derivation and application of LMTD
- Black body radiation, Grey body, heat exchange between black & brown bodies, exchange of
- radiation between absorption and emission
- About double pipe, shell and multi pass heat exchanger
- About leaching and extraction equipments.
- About Humidification and drying.
- About evaporations and its applications.

Course Outcome

On successful completion of the course, the students will be able to attain

below Course Outcome (CO):

	Course outcome	BTL
CO1	Understand the construction and working principle of various size reduction and screening equipments	R
CO2	Understand the principle, construction & working of various conveying methods, filteration and settling equipments	Α
CO3	Understand basic concepts of conduction, convection & radiation	Α
CO4	Understand the principle, construction & working of heat exchanging equipments	Α
CO5	Understand the principle, construction & working of gas absorption, Humidification & Drying equipments	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's

revised taxonomy Level)

Course-PO Attainment Matrix

СО	Program Outcomes (PO) Outcomes (PSO				-				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation									
Strong – S / 3			Mediu		2		Weak	x – W / 1	

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO.

- If <u>>40%</u> of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3
- If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2
- If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1
- If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	SIZE REDUCTION & SCREENING	
	Chapter 1.1 - units of temperature, pressure, and simple numerical of	
	their inter conversion	
	Chapter 1.2 - Advantages - Important methods of size reduction -	. –
	Classification of size reduction equipments namely Blake jaw	15
	crusher, Ball mill and Rotary Knife cutter	
	Chapter 1.3 - Average particles size- Screening - Notes on differential	
	and cumulative sieve analysis (basic qualitative treatment only)	
П	CONVEYING & SEPERATION OF MATRIALS	
	Chapter 2.1 - Belt conveyor - Bucket elevator - Screw conveyor and	
	Pneumatic conveyors	
	Chapter 2.2 - Clarification and classification flocculation - Free and	
	hindered setting - Sink and float methods sedimentation -Setting	
	equipment namely Gravity thickener. (all heating describe treatment	14
	only)	
	Chapter 2.3 - Principle - Construction and operation of filtration	
	equipment namely continuous Rotary drum vacuum filter.	
	Chapter 2.4 - Principle of a Centrifuge and construction and operation	
	of Simple basket centrifuge FUNDAMENTALS OF HEAT TRANSFER	
	Chapter 3.1 - Modes of heat transfer – Conduction, convection and	
	radiation – Examples Conduction:- Fourier's law – Heat flow through a flat	
	wall Thermal conductivity – Analogy between heat conduction and	
	electricity simple numerical on heat flow through a flat wall.	
	Chapter 3.2 - Natural and forced convection – Example – Heat flux	15
	Surface(individual heat transfer) coefficients – Overall coefficient	
	Fouling factors – Simplification of overall coefficient – Simple	
	numerical involving surface and overall coefficients on simplified	
	overall coefficient formulae Mention of four dimensionless numbers	
	namely Length to Diameter ratio, Reynolds's no,prantl's no Nusselt	
	no, (formulae only)	

V	FUNDAMENTALS OF HEAT EXCHANGERS	
	Chapter 4.1 - Concept of LMTD – Parallel and counter current flow –	
	Applications – Simple numerical on LMTD for parallel and counter	
	flows Equipments :- Double pipe heat exchanger - Simple 1-1Shell	
	and tube heat exchanger with sketches	
	Chapter 4.2 - Wavelengths of thermal radiation – Thermal radiation –	
	Blackbody Greybody, Absorptivity, emmisivity - Comparison of	
	conduction-convection-radiation.	
	Chapter 4.3 - Evaporation - Liquid characteristics - Evaporator	14
	types namely falling film evaporators - Single effect and multiple	
	effect evaporation Material balance ofsingle effect evaporator -	
	Material balance for a triple effect evaporator - capacity, steam	
	economy and elevation in boiling point. (Definition and description	
	only) – Simple numerical on material balance of single effect	
	evaporators – Simple numerical on material balance of triple effect	
	evaporators	
/	ABSORPTION, HUMIDIFICATION & DRYING	
	Chapter 5.1 - Gas absorption – construction and operation of packed	
	tower for absorption - Important tower packing characteristics of	
	tower packing.	
	Chapter 5.2 - Humidification – dehumidification - definition of	45
	humidity Industrial water cooling using Natural draft and Mechanical	15
	draft cooling towers.	
	Chapter 5.3 - Drying – Definition - moisture – Bound and unbound	
	moisture – Free moisture – Drying equipment –Tray drier – cylinder	
	drier.	

Reference Books

1	1 Chemical Engineering Hand book- Seventh edition Robert H .Perry-and					
D.W.	Green Perry's	McGraw Hill				
2 Sons	Principles of unit operation	ns	A.S. Foust etal.,	Willey &		
3	Chemical Engineering- Vo Morgan Kauffman publishe		J.M. Coulson & J.F	. Richardson		
4	Unit operation in chemical	lengineering	Warren L. McCabe	And Julian		
D. Sr	nith	McGraw Hill				
5 Banc	Introduction to chemical er	ngineering Tata McGraw Hill	Walter L. Badger a	nd Julius T.		

5F5402 - PROCESS INSTRUMENTATION AND CONTROL

Programme Name	•	DIPLOMA IN PAPER TECHNOLOGY.
Course Code	:	5F5402
Term	:	V
Course Name	:	Process Instrumentation & Control

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination				
Course	Hours Hours						
	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total	Duration	
Process							
Instrumentation	5	80	25	100*	100	3 Hrs.	
& Control							

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.				
I	Measurement Of Temperature And Pressure	15				
	Measurement Of Flow And Level	14				
III	Measurement Of pH, Humidity And Viscosity	15				
IV	Process control and Automatic controller	14				
V	Computer Controlled Processes	15				
	Test & Model Exam					
	Total					

RATIONALE:

Most of the papermaking operations will involve measurement of temperature and pressure, flow and level, pH, humanity and viscosity, process control. It is, therefore, extremely necessary to have good knowledge about this methods can then be useful for understanding the working principle construction, repair and use of these equipments. Various instrument used to measure various process parameters.

OBJECTIVES:

. At the end of this course, students will be able to know

- Purpose of instrumentation and instruments used for measuring the temperature. Different types of manometers.
- The measurement different types of flow and level measurement. Capacitance and conductivity type level sensors.
- > The definition of pH, humidity and viscosity
- Process control principles and purpose of feedback control. Different types of controllers. Pneumatic Controllers-concept and application only in Pneumatic system, The control applications in reactor temperature, reactor pressure, heat exchanger.
- The computer controlled processes like analog signal to digital DCS, supervisory control simple control flow sheets using computer.

Course Outcome

On successful completion of the course, the students will be able to attain

below Course Outcome (CO):

	Course outcome	BTL
CO1	Identify construction, working principles & uses of different instruments used for pressure and temperature measurement	R
CO2	Identify construction, working principles & uses of different instruments used for flow and level	R
CO3	Identify construction, working principles & uses of different instruments used for pH, Humidity & Viscosity	R
CO4	Understand different types of process control methods	U
CO5	Understand construction, working of PLC & DCS	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's

revised taxonomy Level)

Course-PO Attainment Matrix

СО	Program Outcomes (PO)							Program Specific Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	
CO1										
CO2										
CO3										
CO4										
CO5										
TOTAL										
No. of COs Mapping with POs										
Average										
Round off(Average)										
Correlation										
Strong – S / 3			Mediu		2		Weak	x – W / 1		

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO.

- If <u>>40%</u> of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3
- If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2
- If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1
- If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours					
	Chapter: 1.1: Units - General purpose of instrumentation - Instruments for						
	measuring temperature - Liquid and gas filled thermometers, Bimetallic						
	thermometers, Electrical resistance thermometers, Thermocouples -						
	Principles, different types and their application -Thermopiles, Thermistors,						
	Radiation pyrometer and Optical pyrometer.						
	<u>Chapter: 1.2:</u> Units – different types of pressure &						
I	measurements - Mc Leod gauge- Bourdon gauge-Principle, Different						
	types of bourdon tubes, application, Bellows type and diaphragm type						
	pressure sensors - Vacuum measurement - Ionisation vacuum gauge,						
	Pirani gauge.						
	Chapter: 1.3: LVDT, Strain gauge sensor, Piezo resistive pressure						
	sensor						
	Chapter: 2.1: Units - Head flow meters: Orifice and Venturi – Pitot tube,						
	Ultrasonic flow measurement, vortex flow measurement, Area flow meters -						
II	Rotameter – Metering pumps, Notating disc meter, Magnetic flow meter.						
	Level measurement: Visual indicator methods - Float level indicator -						
	Bubbler type - Displacement type level indicator - Capacitance and						
	conductivity type level sensors – Nuclenic level gauge.						
	<u>Chapter: 3.1:</u> P^H & Conductivity, definition, significance-Method of						
	measuring. Humidity - definition of absolute and relative humidity -						
111	Measurement of humidity - Dry and wet bulb thermometer - Hair	15					
	hygrometer, Sling psychomotor. Viscosity - Absolute and kinematic	15					
	viscosity - Viscosity measurement - Say bolt and Redwood viscometer -						
	Falling- ball viscometer.						
	Chapter: 4.1: Process Control Open loop & closed loop						
IV	Systems - Principles and purpose of Feed Back Control - Feed						
	Forward Control – Ratio Control – Cascade control	14					
	Chapter: 4.2: controllers- classification - based on control action such as	14					
	P,I,PI,PD,PID based on actuating medium such as Pneumatic						
	Controllers-concept and application only in Pneumatic system. Block						

	Diagrams - Sources of Process lag - Control applications in (i) Reactor	
	Temperature (ii) Reactor Pressure (iii)Heat exchanger – Temperature,	
	Flow (iv)Distillations Column-Temperature, Flow, Process.	
	Chapter: 5.1: Analog Signal from processes - conversion of analog signal	
	to digital signal in computers computer programmes- conversion of digital	
V	signal to analog signal – PLC – Difference between PLC & DCS	
V	Chapter: 5.2: Distributed control systems (DCS) - Machine control	15
	systems – Quality Control Systems – Networking – Advanced Process	
	Control systems – Enterprises Resource planning.	

Reference Books

SI.No	Name of the Book	Author	Publisher
1	Industrial	Donald P. Eckman	New Age international
2	instrumentation	B.K. Sharma	(P) Publication
3	Instrumental methods of	Robert H. Perry &	Goal publishing House
4	chemical analysis	D.W. Green	private Ltd
	Perry's chemical	H.H. Willard, etal	Mc Graw Hill Book
	Engineering Hand Book		Co.Singapore
	 Seventh edition 		D Van No strand Co.,
	Instrumental methods of		
	analysis		

	5F520	9 - ENTREPRENEURSHIP AND STARTUPS
Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY
Course Code	:	5F5209
Term	:	V
Course Name	:	ENVIRONMENTAL ENGINEERING LAB

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination				
Course	Hours Hours / Week / Term						
oourse			Internal Assessment	Autonomous Examination	Total	Duration	
ENVIRONMENTAL							
ENGINEERING	4	64	25	100*	100	3 Hrs.	
LAB							

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Students will be given the idea of various processes to measurement of Temperature using Thermocouple module, RTD module, and pressure using strain gauge type Transducer, dead weight tester. The status of Indian industries in relation to pulp making should be imparted to them. The use of pulp for various types of papermaking should also be emphasized.

OBJECTIVES:

After completion of this practical, the student should be able to construct

- To know the measurement of Temperature
- To know the measurement of pressure
- To know the basic definition and standard terms used in pulp and paper industries Calibration of pressure gauges, Liquid level ON – OFF Control, Demonstration of flow rate control
- > To know the types of P, PI control, PID Control using PID controller Trainer Kit
- To know the characteristics of flow control valve and temperature ON OFF Control
- To know the analysis of instrumentation Failure and Linear variable Differential Transformer Module

Course Outcomes:

	Course outcome	BTL
CO1	Determine COD, BOD & DO in water samples	R
CO2	Determine P ^H , Electrical conductivity, acidity, alkalinity & Turbidity of given water sample	Α
CO3	Determine solid contents	Α
CO4	Determine break point chlorination for the given water sample	Α
CO5	Find amount of optimum coagulant dosage needed for the given water sample	U

Mapping Course Outcomes (CO) - Program Outcomes (PO)

СО	Program Outcomes (PO)							Program Specific Outcomes (PSO)		
	P01	PO2	PO3	PO4	PO5	PO6	P07	PSO1	PSO2	
CO1										
CO2										
CO3										
CO4										
CO5										
TOTAL										
No. of COs Mapping with POs										
Average										
Round off(Average)										
Correlation										
Strong – S / 3		Medium – M /2 Wea					Weak	x – W / 1		

DETAILED SYLLABUS

Contents: DEPARTMENT PAPER TECHNOLOGY **NAME OF THE TOPICS: Process Instrumentation & Control Practical**

Exercise:

- 1. Determination of chemical oxygen demand (COD).
- 2. Determination of dissolved oxygen (D.O)
- 3. Determination of biological oxygen demand (BOD)
- 4. Estimation of optimum coagulant dosage
- 5. Determination of solids (TSS & TDS)
- 6. Determination of the Turbidity, Electrical Conductivity and pH of the given sample
- 7. Determination of acidity in process water,
- 8. Determination of alkalinity in process water.
- 9. Analysis of ions: copper, chlorides and sulfate
- 10. Determination of break point chlorination

Experiment Plan:

Module	Week	Experimente Name	Course	Weightage
No.	No.	Experiments Name	Outcome	
1	3	Determination of chemical oxygen		
I	3	demand (COD).		
2	4	Determination of dissolved oxygen		
2	4	(D.O)		
3	5	Determination of biological oxygen		
3	5	demand (BOD)		
4	6	Estimation of optimum coagulant		
4	0	dosage		
5	7	Determination of solids (TSS & TDS)		
		Determination of the Turbidity,		
6	8	Electrical Conductivity and pH of the		
		given sample		
7	9	Determination of acidity in process		
,	9	water,		
8	10	Determination of alkalinity in process		
0	10	water.		
9	11	Analysis of ions: copper, chlorides and		
3		sulfate		
10	12	Determination of break point		
	١Z	chlorination		

LIST OF EQUIPMENTS

- Conical flasks 250 ml
- Burners
- Tripod stand and wire gauze
- Burette stand with clamp
- Burettes 50 ml
- Pipettes 5ml, 10ml, 20ml, 25ml
- Funnels
- DO Meter And DO testing kit
- BOD incubator Erlenmeyer flask with lid
- Jar test apparatus
- Silica dish 250 ml, Hot plate
- Turbidity meter
- Conductivity meter
- P^H meter
- Spectrometer
- 2L Beaker

Lab Assessment

SI.	Rubrics (Sample)	Marks								
No.		High 5-4	Medium 3-2	Low 1-0						
Conduction of experiment (Software)										
1.	Chemical Handling	Proper , Safest way of Chemical Handling & Usage of PPE	Minimum usage of Proper , Safest way to Chemical Handling & Usage of PPE	Safe less & Easiest way of Chemical Handling without using PPE						
2.	Accuracy of titration Results	All the steps are followed correct sequence of Chemical addition & The speed of	Some steps are followed correct sequence of Chemical addition & The	Steps are not followed to sequence of Chemical addition & The speed of						

		titration	speed of titration	titration
3.	Presentation of results	Accurate results & Calculation. Neatly presented	Complete and neatly presented, Minor mistakes in Result & Calculation	Incomplete results, Mistakes in Calculation Sequence
4	Viva	Almost all the questions are answered.	Partially answered	Unable to answer.
5	Promptness	The experiment is Completed on time. Observation/Record note is submitted on time	The experiment is completed on time but the Observation / Record note is not submitted on time.	The experiment is not completed on time. Observation / Record note is not submitted on time.
	Mark Allocation	25-20	15-10	5-0

		5F5210 - Unit Operations Laboratory
Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY
Course Code	:	5F5210
Term	:	V
Course Name	:	Unit Operations Laboratory

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination				
Course	Hours Hours						
	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total	Duration	
Unit Operations Laboratory	4	64	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

It gives the student knowledge of working of individual mechanical operations and their significance in chemical industries. With this information student can control the operation of equipment and regulate production.

OBJECTIVES

After completing all the experiments in the laboratory the student will be able to

- > Determine the screen efficiency of a set of a set of sieves.
- Determine the specific cake resistance and filter medium resistance in a leaf filter.
- > Centrifuge a given sample of slurry in a centrifuge
- > Determine the viscosity of given liquid using stokes law
- > Determine batch settling characteristics of a slurry & fluidized bed operation

Course Outcomes:

	Course outcome	BTL
CO1	Know the characteristics of filtration and settling of calcium carbonate	R
CO2	Separate different sized solid particles using a set of sieve	Α
CO3	Determine the heat transfer coefficient of Open pan evaporator	Α
CO4	Determine the drying characteristics of wet solids inside drying chamber	Α
CO5	Determine the operation efficiency of a given Ball mill setup	U

со		Program Outcomes (PO)						Program Specific Outcomes (PSO)	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation	Correlation								
Strong – S / 3	Medium – M /2 Weak						x – W / 1		

Mapping Course Outcomes (CO) - Program Outcomes (PO)

DETAILED SYLLABUS

Contents: Practical **Name of the Topics:**

Exercise

- 1. To study the settling characteristics of calcium carbonate slurries of two different concentrations and plot graphs and make inferences
- 2. Determination of viscosity of water by making it flow through a capillary tube of known length and diameter
- 3. Analyze a feed by separating it into different sized solid particles using a set of sieve
- Determination of viscosities of different free flowing liquid samples using an Ostwald's viscometer
- To study the Filtration characteristics of calcium carbonate slurry (using a vacuum leaf filter) by low & high pressure filtration and plot graphs and make inferences.
- 6. Determination of Overall heat transfer coefficient 'U' of an open pan evaporator set-up with continuous stirring of the bath liquid.
- 7. To study the drying characteristics of a wet solid by drying it in a current of air inside a drying chamber, and plot graphs and make interfaces.
- Determination of LMTD and Overall heat transfer coefficient of water air system.
- 9. Determination of steam required to distilled unit samples of Aniline sample
- 10. Determination of percentage recovery of sodium hydroxide from its admixture with sand by single stage leaching to understand the principles behind leaching operation.
- 11. Ball Mill and operation efficiency

Experiment Plan:

Module	Week	Experiments Name	Course	Weight
No.	No.		Outcome	age
	3	To study the settling characteristics of calcium		
		carbonate slurries of two different		
		concentrations and plot graphs and make		
		inferences		
	4	Determination of viscosity of water by making		
		it flow through a capillary tube of known		
		length and diameter		
	5	Analyze a feed by separating it into different		
		sized solid particles using a set of sieve		
	6	Determination of viscosities of different free		
		flowing liquid samples using an Ostwald's		
		viscometer		
	7	To study the Filtration characteristics of		
		calcium carbonate slurry (using a vacuum leaf		
		filter) by low & high pressure filtration and plot		
		graphs and make inferences.		
	8	Determination of Overall heat transfer		
		coefficient 'U' of an open pan evaporator set-		
		up with continuous stirring of the bath liquid.		
	9	To study the drying characteristics of a wet		
		solid by drying it in a current of air inside a		
		drying chamber, and plot graphs and make		
		interfaces.		
	10	Determination of LMTD and Overall heat		
		transfer coefficient of water - air system.		
	11	Determination of steam required to distilled		
		unit samples of Aniline sample		
	12	Determination of percentage recovery of		
		sodium hydroxide from its admixture with sand		

	by single stage leaching to understand the	
	principles behind leaching operation.	
13	Ball Mill and operation efficiency	

Lab Assessment									
SI.	Rubrics (Sample)		Marks						
No.		High 5-4	Medium 3-2	Low 1-0					
	Cor	duction of experime							
1.	Equipment Handling	Proper , Safest way of Equipment Handling & Usage of PPE	Minimum usage of Proper , Safest way to Equipment Handling & Usage of PPE	Safe less & Easiest way of Equipment Handling without using PPE					
2.	Accuracy of titration Results	All the steps are followed correct sequence of Procedure	Some steps are followed correct sequence of Procedure	Steps are not followed to sequence of Procedure					
3.	Presentation of results	Accurate results & Calculation. Neatly presented	Complete and neatly presented, Minor mistakes in Result & Calculation	Incomplete results, Mistakes in Calculation Sequence					
4	Viva	Almost all the questions are answered.	Partially answered	Unable to answer.					
5	Promptness	The experiment is Completed on time. Observation/Record note is submitted on time	The experiment is completed on time but the Observation / Record note is not submitted on time.	The experiment is not completed on time. Observation / Record note is not submitted on time.					
	Mark Allocation	25-20	15-10	5-0					

5F5211 - ENVIRONMENTAL ENGINEERING LABORATORY

Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY
5		
Course Code	:	5F5211
	•	51 52 11
Term		V
Tenn	•	v
Course Nome		ENVIRONMENTAL ENGINEERING LABORATORY
Course Name	:	ENVIRUNIVIENTAL ENGINEERING LADURATURT

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination			
Course	Hours	Hours				
	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total	Duration
ENVIRONMENTAL						
ENGINEERING	4	64	25	100*	100	3 Hrs.
LAB						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Students will be given the idea of various processes to measurement of Temperature using Thermocouple module, RTD module, and pressure using strain gauge type Transducer, dead weight tester. The status of Indian industries in relation to pulp making should be imparted to them. The use of pulp for various types of papermaking should also be emphasized.

OBJECTIVES:

After completion of this practical, the student should be able to construct

- To know the measurement of Temperature
- To know the measurement of pressure
- To know the basic definition and standard terms used in pulp and paper industries Calibration of pressure gauges, Liquid level ON – OFF Control, Demonstration of flow rate control
- > To know the types of P, PI control, PID Control using PID controller Trainer Kit
- To know the characteristics of flow control valve and temperature ON OFF Control
- To know the analysis of instrumentation Failure and Linear variable
 Differential Transformer Module

Course Outcomes:

Course outcome				
CO1	Determine COD, BOD & DO in water samples	R		
CO2	Determine P ^H , Electrical conductivity, acidity, alkalinity & Turbidity of given water sample	Α		
CO3	Determine solid contents	Α		
CO4	Determine break point chlorination for the given water sample	Α		
CO5	Find amount of optimum coagulant dosage needed for the given water sample	U		

со	со				Program Outcomes (PO)					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PSO1	PSO2	
CO1										
CO2										
CO3										
CO4										
CO5										
TOTAL										
No. of COs Mapping with POs										
Average										
Round off(Average)										
Correlation										
Strong – S / 3			Medium – M /2 V				Weak	Weak – W / 1		

Mapping Course Outcomes (CO) - Program Outcomes (PO)

DETAILED SYLLABUS

Contents: DEPARTMENT PAPER TECHNOLOGY **NAME OF THE TOPICS: Process Instrumentation & Control Practical**

Exercise:

- 1. Determination of chemical oxygen demand (COD).
- 2. Determination of dissolved oxygen (D.O)
- 3. Determination of biological oxygen demand (BOD)
- 4. Estimation of optimum coagulant dosage
- 5. Determination of solids (TSS & TDS)
- 6. Determination of the Turbidity, Electrical Conductivity and pH of the given sample
- 7. Determination of acidity in process water,
- 8. Determination of alkalinity in process water.
- 9. Analysis of ions: copper, chlorides and sulfate
- 10. Determination of break point chlorination

Experiment Plan:

Module	Week	Experimente Name	Course	Weightage
No.	No.	Experiments Name	Outcome	
1	3	Determination of chemical oxygen		
I	3	demand (COD).		
2	4	Determination of dissolved oxygen		
2	4	(D.O)		
3	5	Determination of biological oxygen		
3	5	demand (BOD)		
4	6	Estimation of optimum coagulant		
4	0	dosage		
5	7	Determination of solids (TSS & TDS)		
	8	Determination of the Turbidity,		
6		Electrical Conductivity and pH of the		
		given sample		
7	9	Determination of acidity in process		
,	9	water,		
8	10	Determination of alkalinity in process		
0	10	water.		
9	11	Analysis of ions: copper, chlorides and		
3	11	sulfate		
10	12	Determination of break point		
	12	chlorination		

LIST OF EQUIPMENTS

- Conical flasks 250 ml
- Burners
- Tripod stand and wire gauze
- Burette stand with clamp
- Burettes 50 ml
- Pipettes 5ml, 10ml, 20ml, 25ml
- Funnels
- DO Meter And DO testing kit
- BOD incubator Erlenmeyer flask with lid
- Jar test apparatus
- Silica dish 250 ml, Hot plate
- Turbidity meter
- Conductivity meter
- P^H meter
- Spectrometer
- 2L Beaker

		Lab Assessme	ent							
SI.	Rubrics (Sample)		Marks							
No.		High 5-4	Low 1-0							
Conduction of experiment (Software)										
1.	Chemical Handling	Proper , Safest way of Chemical Handling & Usage of PPE	Minimum usage of Proper , Safest way to Chemical Handling & Usage of PPE	Safe less & Easiest way of Chemical Handling without using PPE						
2.	Accuracy of titration Results	All the steps are followed correct sequence of Chemical addition & The speed of titration	Some steps are followed correct sequence of Chemical addition & The speed of titration	Steps are not followed to sequence of Chemical addition & The speed of titration						
3.	Presentation of results	Accurate results & Calculation. Neatly presented	Complete and neatly presented, Minor mistakes in Result & Calculation	Incomplete results, Mistakes in Calculation Sequence						
4	Viva	Almost all the questions are answered.	Partially answered	Unable to answer.						
5	Promptness	The experiment is Completed on time. Observation/Record note is submitted on time	The experiment is completed on time but the Observation / Record note is not submitted on time.	The experiment is not completed on time. Observation / Record note is not submitted on time.						
	Mark Allocation	25-20	15-10	5-0						

5F5403 - PROCESS INSTRUMENTATION AND CONTROL LABORATORY

Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY
5		
Course Code		5F5403
	•	
Term		V
Tenn	•	·
Course Name	:	Process Instrumentation & Control Laboratory
Course Maine	•	rocess instrumentation & control Laboratory

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination				
Course	Hours	Hours					
Course	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total	Duration	
PROCESS							
INSTRUMENTATION	4	64	25	100*	100	3 Hrs.	
& CONTROL	4		25	100	100		
LABORATORY							

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Students will be given the idea of various processes to measurement of Temperature using Thermocouple module, RTD module, and pressure using strain gauge type Transducer, dead weight tester. The status of Indian industries in relation to pulp making should be imparted to them. The use of pulp for various types of papermaking should also be emphasized.

OBJECTIVES:

After completion of this practical, the student should be able to construct

- To know the measurement of Temperature
- To know the measurement of pressure
- To know the basic definition and standard terms used in pulp and paper industries Calibration of pressure gauges, Liquid level ON – OFF Control, Demonstration of flow rate control
- > To know the types of P, PI control, PID Control using PID controller Trainer Kit
- To know the characteristics of flow control valve and temperature ON OFF Control
- To know the analysis of instrumentation Failure and Linear variable Differential Transformer Module

Course Outcomes:

	Course outcome	BTL
CO1	Measure temperature using Thermocouple & RTD module	Α
CO2	Measure pressure using Strain gauge, Bourdon tube & Dead weight Gauge	Α
CO3	Control liquid level & Temperature On – Off controller	Α
CO4	Control P, PI, PID using PID Controller trainer Kit	Α
CO5	Know the application of LVDT in various flow control equipments	R

со		Program Outcomes (PO)					Program Specific Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation	Correlation								
Strong – S / 3	Medium – M /2 Weak – W / 1								

Mapping Course Outcomes (CO) - Program Outcomes (PO)

DETAILED SYLLABUS

Contents: DEPARTMENT PAPER TECHNOLOGY

NAME OF THE TOPICS: Process Instrumentation & Control Practical Exercise:

- 1. Measurement of Temperature using Thermocouple and RTD module's
- 2. Measurement of Pressure using Strain Gauge type Transducer
- 3. Measurement of Pressure using Bourdon pressure transducer
- 4. Calibration of pressure gauges using Dead weight Tester
- 5. Liquid level ON-OFF Control
- 6. Demonstration of flow rate control using Alarm Circuit
- 7. P,PI,PID Control using PID Controller Trainer Kit
- 8. Characteristics of flow control valve
- 9. Temperature ON-OFF Control

10. Linear variable Differential Transformer Module

Experiment Plan:

Module	Week	Experimente Name	Course	Weightage
No.	No.	Experiments Name	Outcome	
1	3	Measurement of Temperature using		
I	5	Thermocouple and RTD module's		
2	4	Measurement of Pressure using Strain		
2	4	Gauge type Transducer		
3	5	Measurement of Pressure using		
5	5	Bourdon pressure transducer		
4	6	Calibration of pressure gauges using		
4	0	Dead weight Tester		
5	7	Liquid level ON-OFF Control		
6	8	Demonstration of flow rate control		
0	0	using Alarm Circuit		
7	9	P,PI,PID Control using PID Controller		
1	9	Trainer Kit		
8	10	Characteristics of flow control valve		
9	11	Temperature ON-OFF Control		
10	12	Linear variable Differential Transformer		
	12	Module		

LIST OF EQUIPMENTS

- Thermocouple
- Resistance temperature detector
- Strain gauge transducer
- Bourdon tube pressure gauge calibrator setup
- Dead weight pressure gauge
- Level transmitter
- Flow rate control alarm circuit
- P, PI and PID Controller Trainer Kit
- Pneumatic control valve
- Temperature On Off controller with sensor
- LVDT

Lab Assessment								
SI.	Rubrics (Sample)		Marks					
No.		High 5-4	High 5-4 Medium 3-2					
	Cor	duction of experime	nt (Software)					
1.	Coding Skill	Show excellent	Show minimal	Show no				
		understanding of	understanding of	understanding of				
		the logic. The code	the logic. But the	the logic and				
		is correct with	code has several	unable to write				
		regard to syntax.	syntax errors	the code				
2.	Simulation steps /	All the steps are	Some steps are	Steps are not				
	Debugging capacity	followed correct	followed but error	followed . Not				
		sequence. Knows	occurred.	showing interest				
		how to debug the	Debugged the	to debug the				
		error	error with the	error.				
			guidance.					
3.	Presentation of	Complete and	Complete and	Incomplete				
	results	accurate results,	neatly presented,	results, Major				
		Neatly presented	Minor mistakes	mistakes				
4	Viva	Almost all the	Partially	Unable to				
		questions are	answered	answer				
		answered.						
5	Promptness	The experiment is	The experiment	The experiment is				
		completed on time.	is completed on	not completed on				
		Observation/Record	time but the	time. Observation				
		note is submitted	Observation /	/ Record note is				
		on time .	Record note is	not submitted				
			not submitted on	ontime.				
			time.					
	Mark Allocation	25-20	15-10	5-0				

	5F0006 - UNIVERSAL HUMAN VALUES
Programme Nan	ne : DIPLOMA IN PAPER TECHNOLOGY.
Course Code	: 5F0006
Term	: V
Course Name	: Universal Human Values
	TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	uctions	Examination				
Subject	Hours /	Hours /					
Subject	Week	Semester	Internal Assessmen	Board Examination	Total	Duration	
Universal							
Human	5	80	25	100*	100	3 Hrs.	
Values							

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

OBJECTIVES:

- 1. To help students distinguish between values and skills, and understand the need, basic guidelines, content and process of value education.
- 2. To help students initiate a process of dialog within themselves to know what they 'really want to be' in their life and profession
- 3. To help students understand the meaning of happiness and prosperity for a Human being.
- To understanding the moral values that ought to guide engineering profession or practice, resolving moral issues in engineering, and justifying the moral judgments in engineering.
- 5. To understand the concept of values, meaning of stress, various causes of stress and to manage stress.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL					
CO1	Understand the significance of value inputs in a classroom and start applying them in their life and profession.						
CO2	Distinguish between values and skills, happiness and accumulation of physical facilities, the Self and the Body, Intention and Competence of an individual, etc.	U					
CO3	Understand the value of harmonious relationship based on trust and respect in their life and Profession.	U					
CO4	To facilitate the students in applying the understanding of harmony in existence in their profession and lead an ethical life.	U					
CO5	To understand the individual and organizational strategies to manage stress.	U					

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

со		Program Outcomes (PO)						Program Specific Outcomes (PSO)	
	P01	PO2	PO3	PO4	PO5	PO6	P07	PSO1	PSO2
CO1	2	2	1	2	-	-	-	-	-
CO2	2	2	1	2	-	-	-	-	-
CO3	2	2	1	2	-	-	-	-	-
CO4	3	2	1	3	-	-	-	-	-
CO5	2	2	1	2	-	-	-	-	-
TOTAL	11	10	5	11	-	-	-	-	-
No. of COs Mapping with POs	5	5	5	5	-	-	-	-	-
Average	2.2	2	1	2.2	-	-	-	-	-
Round off(Average)	2	2	1	2	-	-	-	-	-
Correlation									
Strong – S / 3	3 Medium – M /2						Weak	x – W / 1	

Mapping Course Outcomes (CO) - Program Outcomes (PO)

DETAILED SYLLABUS

Contents: Universal Human Values

Unit	Name of the Topics	Hours
I	COURSE INTRODUCTION - NEED, BASIC GUIDELINES, CONTENT	
	AND PROCESS FOR VALUE EDUCATION	
	Purpose and motivation for the course, recapitulation from Universal	
	Human Values-I - Self-Exploration - what is it? - Its content and	
	process; 'Natural Acceptance' and Experiential Validation- as the	
	process for self- exploration - Continuous Happiness and Prosperity- A	12
	look at basic Human Aspirations - Right understanding, Relationship and	12
	Physical Facility- the basic requirements for fulfilment of aspirations of	
	every human being with their correct priority - Understanding Happiness	
	and Prosperity correctly- A critical appraisal of the current scenario -	
	Method to fulfil the above human aspirations: understanding and living in	
	harmony at various levels.	
II	UNDERSTANDING HARMONY IN THE HUMAN BEING - HARMONY	
	IN MYSELF	
	Understanding human being as a co-existence of the sentient 'I' and	
	the material 'Body'- Understanding the needs of Self ('I') and 'Body' -	
	happiness and physical facility-Understanding the Body as an	12
	instrument of 'I' (I being the doer, seer and enjoyer)- Understanding the	12
	characteristics and activities of 'I' and harmony in 'I'- Understanding the	
	harmony of I with the Body: Sanyam and Health; correct appraisal of	
	Physical needs, meaning of Prosperity in detail- Programs to ensure	
	Sanyam and Health.	
III	UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY-	
	HARMONY IN HUMAN - HUMAN RELATIONSHIP	
	Understanding values in human-human relationship; meaning of Justice	
	(nine universal values in relationships) and program for its fulfilment	11
	to ensure mutual happiness; Trust and Respect as the foundational	11
	values of relationship- Understanding the meaning of Trust; Difference	
	between intention and competence- Understanding the meaning of	
	Respect, Difference between respect and differentiation; the other	

	salient values in relationship-Understanding the harmony in the society								
	(society being an extension of family): Resolution, Prosperity,								
	fearlessness (trust) and co-existence as comprehensive Human Goals-								
	Visualizing a universal harmonious order in society- Undivided Society,								
	Universal Order- from family to world family.								
IV	PERSONALITY DEVELOPMENT AND LEADERSHIP								
	Introduction- Personality- Character- Determinants of Personality and								
	Character Development - Measures to Develop the Personality -								
	Measures to Improve Character – leadership - leadership traits Senses								
	of engineering -Variety of moral issues-Types of inquiries - Moral	11							
	dilemma -Moral autonomy -Moral development (theories)- Consensus								
	and controversy -Profession -Models of professional roles-Responsibility								
	- Theories about right action (Ethical theories)- control -Self-interest -								
	Customs -Religion -Self-respect -Case study: Choice of the theory								
V	STRESS MANAGEMENT								
	Characteristics of Values- Meaning- Sources of Value Formation: Social								
	institutions, Organisation, Colleagues, Work Need of studying values,	11							
	Need for Studying Values- Stress -Meaning and Definition- Nature of	11							
	Stress- Stress Level and Its Impacts- Causes of Stress- Stress								
	Management- Individual Approaches- Organizational Approaches.								

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, etc. will be used in evaluation.

Example:

- Assessment by faculty mentor: 10 marks
- Socially relevant project/Group Activities/Assignments: 15 marks
- Semester End Examination: 100 marks
- Question Pattern for End semester is 50 MCQ.
- Each question carries 2 points (10 MCQ's from Each Unit)
- The overall pass percentage is 40%.

Reference Books

- 1. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 2. The Story of Stuff (Book).
- 3. Small is Beautiful E. F Schumacher.
- 4. Slow is Beautiful Cecile Andrews
- 5. Economy of Permanence J C Kumarappa
- 6. Bharat Mein Angreji Raj PanditSunderlal
- 7. Rediscovering India by Dharampal
- 8. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 9. India Wins Freedom Maulana Abdul Kalam Azad
- 10. Vivekananda Romain Rolland (English)
- 11. IES Master Institute of Enginee

	5F6306 - Chemical Recovery							
Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY.						
Course Code	:	5F6306						
Term	:	VI						
Course Name	:	CHEMICAL RECOVERY						

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions		Examination	1	Duration
Course	Hours	Hours		Marks		
	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total	Duration
CHEMICAL RECOVERY	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.			
I	Objective of Chemical Recovery	15			
	Silica Removal Of Black Liquor	14			
III	Salt Cake make-up-modern Chemical Recovery Unit	15			
IV	Smelt	14			
V	Causticizing	15			
	Test & Model Exam				
	Total	80			

RATIONALE

The subject is mainly to impart knowledge of chemical recovery from kraft pulp mill liquor. By recovery those chemical of reuse the same in to process will save energy and the pollution is controlled.

OBJECTIVE

Student will be able to know

- The chemical recovery in a kraft pulp mill operating techniques and instrumentation methods.
- The silica removal methods practiced in kraft mill from black liquor and green liquor. Merits and demerits of silica removal. The advantages of silica removal from black liquor
- The modern chemical recovery unit the units are Furnace, boiler, super Heater and economizer.
- The clarification of raw green liquor and smelt dissolution. Types of the slacker, clarification of raw green liquor and washer
- > Modern trends in chemical recovery of a kraft mill
- > Know about lime kiln and it's operations.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
CO1	Understand the basic concepts of chemical recovery in pulp mill	R
CO2	Understand the silica removal methods of black liquor	Α
CO3	Understand about the principle, construction & working of recovery boiler	Α
CO4	Understand the conversion process of green liquor to white liquor	Α
CO5	Know about the chemistry of causticizing & their troubleshootings in plant	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

Course-PO Attainment Matrix

СО		Pr	Program Outcomes (PO)				-	Program Specific Outcomes (PSO)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation									
Strong – S / 3			Mediu		2		Weak	x – W / 1	

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO.

- If <u>>40%</u> of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3
- If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2
- If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1
- If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	OBJECTIVE OF CHEMICAL RECOVERY	
	Chapter 1.1 - Objectives of Chemical recovery in a Kraft pulp mill -	
	Various steps involved of Kraft liquor recovery and reuse - Black liquor -	
	Properties of black liquor-Multiple effect evaporation of black liquor -	
	Falling film and Forced circulation evaporators (brief description of each	
	with schematic sketches) - Simple numerical on material balance	45
	relating to black liquor evaporation in multiple effect evaporator plant.	15
	(formulae for material balance to be stated. No derivations required).	
	Chapter 1.2 - Standard terms used in a Kraft recovery plant and simple	
	numerical based on them - Direct contact evaporation of semi	
	concentrated black liquor-Cascade evaporator, Cyclone evaporator and	
	Venturi evaporator cum scrubber.	
	SILICA REMOVAL OF BLACK LIQUOR	
	Chapter 2.1 - Electro Static Precipitation Of Fume In Kraft Recovery	
	Plant – Its Principle Of Working And Operation Silica removal methods	
	practiced in Kraft mill from black liquor and green liquor- Advantages of	4.4
	silica removal -Chemical equations and operations involved in silica	14
	removal.	
	Chapter 2.2 - Oxidation of black liquor - Advantages - Chemical	
	equations involved – Oxidation equipment namely Spiral oxidizer.	
	SALT CAKE MAKE-UP-MODERN CHEMICAL RECOVERY UNIT	
	Chapter 3.1 - Recovery boiler-Super heater Economizer - Air heater-	
	Saltcake mix tank-Smelt dissolving tank-Air fan-Soot blowers and their	
	working.	
	Chapter 3.2 - Black liquor incineration - Different zones inside the	15
	furnacefunctions and changes taking place inside the furnace-	15
	Explosion Hazards and common troubles associated with the Recovery	
	furnace and allied equipments - Chemistry involved at the various	
	stages of recovery and reuse of kraft spent liquor - Stack emission	
	control	

V	SMELT								
	Chapter 4.1 - Smelt dissolution - Raw Green	liquor - Clarification of							
	raw green liquor - Dregs and its washing - S	laking of green liquor-							
	Stationary slaker cum classifier - Rotary slaker and classifier - Grits								
	and its washing-Causticising tanks-Raw white lig	uor-Clarification of whit							
	liquor – Unit type -Lime mud washing – Ur	nit type and Balanced							
	compartmental tray type mud washers-Lime mu	id dewatering – Rotary	14						
	drum vacuum filter and Belt filters.								
	Chapter 4.2 - Make up lime and lime stone - Des	silication of lime sludge-							
	Partial Causticising - Rotary lime kiln - Constru	uction and Operation -							
	Burning of lime mud - Different zones an	d their functions and							
	temperatures inside the kiln. Fluidised bed calcina	ations system.							
V	CAUSTICIZING								
	Chapter 5.1 - Chemistry of Causticising - Ca	austicising efficiency –							
	Factors influencing it - Reasons for incomplete Causticising - simple								
	numerical on Causticising efficiency - Sodium, Sulphur and Calcium								
	losses - Reduction efficiency in furnace - Available calcium oxide from								
	kiln. Trouble shooting in Causticising plant.								
Re	ference Books	I							
1	Hand book of pulp and paper technology	Kenneth W. Britt CBS							
Pu	blishers								
	pulp and paper manufacture volume I	_							
2	puip and paper manufacture volume i	Ronald G. Mc Donald							
2	McGraw - Hill	Ronald G. Mc Donald							
2 3		Ronald G. Mc Donald James P. Casey Acade	emic						
3	McGraw - Hill		emic						
3	McGraw - Hill pulp and paper volume I and II		mic						
3 Pre	McGraw - Hill pulp and paper volume I and II ess	James P. Casey Acade							
3 Pre 4 5	McGraw - Hill pulp and paper volume I and II ess Pulping process Sven A. Rydholm	James P. Casey Acade							

5F6307 - Pulp and Paper Technology III							
Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY.					
Course Code	:	5F6307					
Term	:	VI					
Course Name	:	PULP & PAPER TECHNOLOGY – III					

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions				
Course	Hours	Hours		Marks		
	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total	Duration
PULP & PAPER						
TECHNOLOGY -	5	80	25	100*	100	3 Hrs.
III						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.			
I	Sheet formation	15			
	Modern developments in sheet formation & cylinder machines	14			
III	Pressing	15			
IV	Drying	14			
V	Calendaring & Coating	15			
	Test & Model Exam				
	Total	80			

RATONALE

Most of the pulp & paper industry will involve some operations. The pulp mill operations are washing, screening, centricleaning, bleaching. The paper machine operations are headbox, press and principles of drying. Therefore, it's necessary to have good understanding about the pulp and paper equipments – Diagram and description, Bleaching with a reducing agent common and special qualities and their characteristics of paper including industrial papers and electrical grade papers such as conduction, convection. These methods can be used for understanding the performances of equipment used in almost all chemical and related industries.

OBJECTIVE

At the end of this course, students will be able to Know

- Sheet formation single wire Fourdriner machines, Twin & multilayer wire systems, operation of wire part, various parts on wire part, water drainage and sheet formation on forming fabric, construction of wire table and various supporting roll, operation and control of wire part.
- Water removal by wet pressing Sheet consolidation various press design.
- Role of press fabric theory of pressing felt/ Fabric conditioning and cleaning.
- > The principles of drying. The description of multi cylinder and yankee cylinder.
- The super calendaring, construction of super calendar and its description
- The principles of cylinder machines., Diagram and description of the two types of vat flows piping system. The common troubles of cylinder mould machines...
- The coating chemicals and typical formulation Air knife coater Flexible blade coaters and a simple sketch. Application and advantages of curtain coater
- Know the modern development in sheet formation. The different types of sheet formation. To know the finishing of paper.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
CO1	Understand the process involved in sheet making	R
CO2	Know about modern developments in sheet formation & cylinder machines	Α
CO3	Understand about the various press configuration	Α
CO4	Understand the principle, working of different types of drying cylinder	Α
CO5	Understand the process of calendaring & coating	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's

revised taxonomy Level)

Course-PO Attainment Matrix

СО		Pr	ogram	Outco	Program Specific Outcomes (PSO)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation									
Strong – S / 3			Medium – M /2 Wea					k – W / 1	

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO.

- If <u>>40%</u> of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3
- If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2
- If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1
- If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
Ι	SHEET FORMATION	
	Chapter 1.1 - Definition of sheet formation and paper- Head box and it	
	functions and important types- The three sections of Head box with	
	simple sketch- Types of distributors (simple type, tapered duct type with	
	flow eveners. With fan pump, cross flow type, and multiple branc	
	manifold- A simple sketch and description on each)- Middle section	
	Types and functions of slices- Evaluation of pressure head in head box -	4 5
	Dilution control system – CFD formers	15
	Chapter 1.2 - A complete description with a neat diagram of four driner	
	wire part- Placement of stock on the wire sagging- Jet wire speed ratio	
	and its significance- Dewatering at table rolls- Grooved table rolls- Couch	
	and its types- The three types of transfer of web from couch to press	
	part- Drainage at wire part VS hydraulic pres part gradient (Qualitative	
	treatment only) – Shower water system	
II	MODERN DEVELOPMENTS IN SHEET FORMATION & CYLINDER	
	MACHINES	
	Chapter 2.1 - High speed machines - Twin Wire former - Top	
	former & shaker – Inverform machines – Stevence former –	
	Roto former – Hybrid former. A note on stretch in paper.	
	Chapter 2.2 - Principle of cylinder machines - Speed limitations -	14
	Disadvantages and advantages of cylinder machines - Factor affecting	
	drainage - Diagram and description of the two types of vat flows with	
	piping system - Primary press part of cylinder machines - Common	
	troubles of cylinder mould machines.	
	PRESSING	
	Chapter 3.1 - The effect of pressing on sheet- Necessity of pressing-	
	construction of press part- crowning of press(solid and suction presses)-	45
	A note on swimming roll with a neat diagram- theory of pressing	15
	(Wahistrom's theory only)- Factors affecting dewatering in pressing- FeIt	
	- Functions, constructions – Extended NIP press (Woven and needle	

	types only) and cleaning of press felts - some special types of	
	presses(Brief notes on)	
	(i) Smoothening press	
	(ii) Air bleed press	
	(iii) Reverse or return press	
	(iv)Fabric press and	
	(v) Unipress	
	(vi) Shoe Press	
IV	DRYING	
	Chapter 4.1 - Introduction principles of drying - Cylinder drying its	
	principles - A graphical sketch of drying for critical moisture content	
	- Description of multi cylinders and Yankee cylinder Factor affecting	
	drying - Drying efficiency in relation to mass and heat transfer- (A	
	qualitative treatment only) - A note on too dry and too wet papers of	14
	drying process - Drying with blowers - Ventilation hoods - Steam and	
	condensate systems – Dryer felts – Vacuum systems of paper machines.	
	Syphonic systems for condensate and removal - advantages of Unirun	
	dryers problems involving production of paper with quantity of water	
	removal at wire part, press part and drying parts – Metering size press.	
V	CALENDARING & COATING	
	Chapter 5.1 - Machine and supercalendering – Effect of calendaring on	
	paper – Common terms – Spreader roll(a simple diagram and a	
	note) - Crowing with reference to hot or cold air blowing anti deflection	
	roll, bottom roll bending and swimming rolls - Construction of super	
	calendar and its description - Creep-humidity during calendaring -	
	Common calendar troubles - A short note on embossing and its two	15
	types (gear and slip embossing) - Paper machine reels and its common	15
	troubles. A qualitative treatment on paper machine drives - Broke	
	handling system.	
	Chapter 5.2 - Aims of coating - coating chemicals and typical	
	formulation – Starch preparation system – Coating color system –	
	online & offline coating system - Air knife coater - Flexible blade	
	coaters – A simple sketch and description of these coaters –	

Rod/metering coater – its application and advantages curtain coater.
Chapter 5.3 - Winding and slitting – Rewinding – Sheet cutting and guillotines – Roll wrapping & Pallet Wrapping - Counting – Packing and dispatching Standard sizes of paper – Common and special qualities and their characteristics of paper including industrial papers and electrical grade papers.
Chapter 5.4 - Introduction to Industry 4.0 – Machine learning & Artificial intelligence

Reference Books

1	Hand book of pulp and p	Kenneth W. Britt	CBS	
Publis	shers			
2	pulp and paper volume I	and II	James P. Casey	Academic
Press	i			
3	Pulping process	Sven A. Rydholm	Inter science publis	her
4	Pulp and paper Manufac	ture I and II	Ronald G Macdonal	ldWiley &
Sons				

		5F6308 - Process Design Concept
Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY.
Course Code	:	5F6308
Term	:	VI
Course Name	:	Process Design Concept

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions Examination						
Course	Hours Hours						
	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total	Duration	
Process Design Concept	5	80	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.				
I	Pulping mill	15				
II	Secondary fibre Procesing	14				
III	Paper Machine	15				
IV	Recovery plant and their equipments.	14				
V	Paper making & Recovery material balance	15				
	Test & Model Exam					
	Total					

RATIONALE

Most of the pulp & paper making process will involve more equipment. Hence the knowledge about design criteria and parameters of equipment are needed. It is, therefore, extremely necessary to have good understanding about the equipment design. The environmental pollution mechanisms such as air pollution, water pollution, land pollution noise pollution and it's controls process. These methods can be used for understanding the performances of equipment used in almost all chemical and related industries.

OBJECTIVE

At the end of this course, students will be able to know

- The different equipments used in pulp and paper making processes. The Mixing and agitation equipments, clarifiers
- > The design criteria and parameters of pulp mill equipments
- The criteria and parameters of recovery and paper machine design
- The pollution control standards for air sources of air pollution, Analytical methods of air pollution, measurement of important air pollutants
- For control of air pollutants as applicable to pulp and paper industries Dust collectors, cyclone seperators, raw water clarification and water treatment
- The pollution control standards for water pollution, industrial waste treatment as applied to paper industry, water conservation methods of BOD and COD
- The land pollution, sources and classification of solid wastes, solid wastes generated from various units of paper mill.,
- The ecology and ecosystem, carbon monoxide and carbon dioxide discharges into atmosphere, global warming, ozone layer depletion, nuclear radiation. Methods being taken up and suggested to cleanup and suggested to cleanup environment for a pollution free planet of the future

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
CO1	Understanding of Material Balance – Pulp mill Digestor, Brown stock washer, Bleaching	U
CO2	Identify of Deinking (Flotation cell) & Low consistency Pulper	R
CO3	Understanding of Material Balance – Paper machine, identify Stock preparation Headbox – Capacity, Fanpump, pipe size Disc refiner, Centri – cleaner & Screening	Α
CO4	Identify of Drying section, No of Dryers, Area of contact, Angle of wrap, Consistency of Pulp at various stages in Wire part and there effects.Wire length &width, Dandy roll	U
CO5	Understanding of Production calculation for paper mill	Α

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's

revised taxonomy Level)

Course-PO Attainment Matrix

СО		Pr	Program Outcomes (PO)						Program Specific Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2		
CO1											
CO2											
CO3											
CO4											
CO5											
TOTAL											
No. of COs Mapping with POs											
Average											
Round off(Average)											
Correlation											
Strong – S / 3	Strong – S / 3			Medium – M /2 We					ak – W / 1		

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO.

- If <u>>40%</u> of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3
- If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2
- If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1
- If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours						
	Pulping mill							
I	Chapter 1.1 - Material Balance – Pulp mill	15						
	Chapter 1.2 - Digestor, Brown stock washer, Bleaching							
	Secondary fibre Processing	14						
II	Chapter 2.1 - Deinking (Flotation cell) & Low consistency Pulper							
	Stock Preparation							
	Chapter 3.1 - Material Balance – Paper machine, Stock preparation							
111	Chapter 3.2 - Headbox – Capacity, Fanpump, pipe size	15						
	Chapter 3.3 - Disc refiner, Centri – cleaner & Screening							
	Wet & Dry End							
	Chapter 4.1 - Drying section, No of Dryers, Area of contact, Angle of							
	wrap							
IV	Chapter 4.2 - Consistency of Pulp at various stages in Wire part and	14						
	there effects.							
	Chapter 4.3 - Wire length & width, Dandy roll							
	Production Calculation	15						
V	Chapter 5.1 - Production calculation for paper mill							

Reference Books

1	Hand book of pulp and pa	Kenneth W. Britt	CBS		
Pub	blishers				
2	pulp and paper volume I	James P. Casey	Academic Press		
3	Pulping processes	Inter science publisher			
4	Pulp and paper Manufactu	ure I and II	Ronald G Macdonald		
	McGraw Hill				
5	Chemical recovery in alka	TAPPI monograph	series		
No.	32				

5F6309 - Paper Technology Laboratory							
Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY					
Course Code	:	5F 6309					
Term	:	VI					
Course Name	:	Paper Technology Laboratory					

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination				
Course	Hours Hours						
Course	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total	Duration	
Paper Technology Laboratory	4	64	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Students will be given the idea of testing various grade of paper. The status of Indian industries in relation to paper testing should be imparted to them.

OBJECTIVES:

After the completion of this practical, the student should be able to know

- > Various optical properties of paper
- Various strength Properties of paper
- Surface strength of paper
- Strength of various raw material

Course Outcomes:

Course outcome					
CO1	Test basic properties of paper like Basis weight, thickness	Α			
CO2	Test strength properties of paper like Surface strength, Bursting & Tensile	A			
CO3	Test physical properties of paper like smoothness, Softness & Porosity	A			
CO4	Test optical properties of Brightness and Opacity of paper	Α			
CO5	Test bonding strength of paper	Α			

со		Program Outcomes (PO)					Program Specific Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation	Correlation								
Strong – S / 3	3 Medium – M /2 Weak – W / 1								

Mapping Course Outcomes (CO) - Program Outcomes (PO)

DETAILED SYLLABUS

Contents: Practical **Name of the Topics:**

Exercise

- 1. Basis weight, thickness, density and bulk
- 2. Bursting strength and burst factor
- 3. Tearing strength and tear factor
- 4. Tensile strength and breaking length
- 5. Brightness and Opacity of paper
- 6. Surface strength of paper(Wax pick)
- 7. Water absorbency Cobb's method
- 8. Smoothness, softness and porosity
- 9. Degree of sizing
- 10. Determination of ply bond.

Experiment Plan:

Module	Week	Experiments Name	Course	Weight	
No.	No.		Outcome	age	
		Basis weight, thickness, density and bulk			
		Bursting strength and burst factor			
		Tearing strength and tear factor			
		Tensile strength and breaking length			
		Brightness and Opacity of paper			
		Surface strength of paper(Wax pick)			
		Water absorbency – Cobb's method			
		Smoothness, softness and porosity			
		Degree of sizing			
		Determination of ply bond.			

Lab Assessment									
SI.	Rubrics (Sample)		Marks						
No.		High 5-4	Medium 3-2	Low 1-0					
'	Con	duction of experime	nt (Software)						
1.	Equipments & Sample Handling	Proper, Safest way of Chemical, Equipment Handling & Usage of PPE	Minimum usage of Proper, Safest way to Chemical, Equipment Handling & Usage of PPE	Safe less & Easiest way of Chemical, Equipment Handling without using PPE					
2.	Observation & Calculation	All the steps are followed correctly, sequence of Chemical addition & way of titration	Some steps are followed correctly, sequence of Chemical addition & way of titration	Steps are not followed correctly, sequence of Chemical addition & way of titration					
3.	Presentation of results	Accurate results & Calculation. Neatly presented	Complete and neatly presented, Minor mistakes in Result & Calculation	Incomplete results, Mistakes in Calculation Sequence					
4	Viva	Almost all the questions are answered.	Partially answered	Unable to answer.					
5	Promptness	The experiment is Completed on time. Observation/Record note is submitted on time	The experiment is completed on time but the Observation / Record note is not submitted on time.	The experiment is not completed on time. Observation / Record note is not submitted on time.					
	Mark Allocation	25-20	15-10	5-0					

LIST OF EQUIPMENTS

- Quadrant scale, Thickness micrometer and Templates
- Bursting strength tester
- Elmendrof type Tearing strength tester
- Tensile strength tester Vertical load
- Brightness, Opacity and gloss tester
- Wax pick sticks
- Cobb's tester
- Smoothness and porosity tester Bendsten type
- Watch glass 6" and stop watch
- Ply bond tester

5F6310 - Chemical Recovery And Technical Analysis Laboratory

Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY
Course Code	:	5F 6310
Term	:	VI
Course Name	:	Chemical Recovery And Technical Analysis Laboratory

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination					
Course	Hours	Hours						
	/ Week / Term		Internal Autonom Assessment Examinat		Total	Duration		
Chemical								
Recovery And								
Technical	4	64	25	100*	100	3 Hrs.		
Analysis								
Laboratory								

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Students will be able to analyse are materials used for cooking of pulp and makeup chemical. He will be also able to analyse liquors generated during chemical recovery process including process water.

OBJECTIVES:

After completion of this practical, the student should be able to construct

- The cooking liquor composition (including AA, TA, TTA, EA, Sulphidity, Causticity and Concentration)
- > New chemical analysis
- Process water analysis
- Effluent analysis

Course Outcomes:

Course outcome					
CO1	Analyze salt cake, soda ash, Green liquor, White liquor	R			
CO2	Determine the available calcium oxide in lime	Α			
CO3	Determine the amount of Total hardness Total solids, chlorides and total alkalinity in water	Α			
CO4	Analysis of smelt to determine reduction efficiency	Α			
CO5	Determine the purity of caustic soda	U			

со		Program Outcomes (PO)					Program Specific Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation									
Strong – S / 3	rong – S / 3			Medium – M /2 Weak				< − W / 1	

Mapping Course Outcomes (CO) - Program Outcomes (PO)

DETAILED SYLLABUS

Contents: Practical

Name of the Topics:

Exercise

- 1. Determination of available calcium oxide in lime
- 2. Analysis of salt cake
- 3. Analysis of soda ash
- 4. Determination of purity of caustic soda
- 5. Analysis of Green liquor
- 6. Analysis of White liquor and determination of Causticising efficiency
- 7. Total hardness of water
- 8. Total solids, chlorides and total alkalinity of water
- 9. Analysis of smelt to determine reduction efficiency
- 10. P^H, Total Solids, Residual Active alkali determination in Black liquor

Experiment Plan:

Module	Week	Experiments Name	Course	Weightage
No.	No.		Outcome	
1	3	Determination of available calcium		
	-	oxide in lime		
2	4	Analysis of salt cake		
3	5	Analysis of soda ash		
4	6	Determination of purity of caustic soda		
5	7	Analysis of Green liquor		
		Analysis of White liquor and		
6	8	determination of Causticising		
		efficiency		
7	9	Total hardness of water		
8	10	Total solids, chlorides and total		
U	10	alkalinity of water		
9	11	Analysis of smelt to determine		
		reduction efficiency		
10	12	P ^H , Total Solids, Residual Active alkali		
	12	determination in Black liquor		

Lab Assessment

SI.			Marks	
No.	Rubrics (Sample)	High 5-4	Medium 3-2	Low 1-0
		Conduction of ex	periment	
1.	Chemical Handling	Proper , Safest way of Chemical Handling & Usage of PPE		Safe less & Easiest way of Chemical Handling without using PPE
2.	Accuracy of titration Results	All the steps are followed correct sequence of Chemical addition & The speed of titration	Some steps are followed correct sequence of Chemical addition & The speed of titration	Steps are not followed to sequence of Chemical addition & The speed of titration
3.	Presentation of results	Accurate results & Calculation. Neatly presented	Complete and neatly presented, Minor mistakes in Result & Calculation	Incomplete results, Mistakes in Calculation Sequence
4	Viva	Almost all the questions are answered.	Partially answered	Unable to answer.
5	Promptness	The experiment is Completed on time. Observation/Record note is submitted on time	The experiment is completed on time but the Observation / Record note is not submitted on time.	The experiment is not completed on time. Observation / Record note is not submitted on time.
	Mark Allocation	35 - 25	25 - 10	10 - 0

LIST OF GLASS WARES AND EQUIPMENTS

- Conical flasks 250 ml, 500 ml
- Pipettes 5 ml, 10 ml, 20 ml, 25 ml, 50 ml
- Burettes 50 ml
- Burette stand with clamp
- Funnels
- Watch glass 6" and 3"
- Wash bottles Plastic
- Hot plate and muffle furnace
- Tripod stand and wire gauze
- Silica crucible with lid
- Aspirator bottles
- Burners
- Beakers 250 ml, 500 ml
- Standard flask 250 ml, 1000 ml
- Silica dish 1000ml
- Air oven
- P^H meter

		5F6311 - Project Work
Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY
Course Code	:	5F 6311
Term	:	VI
Course Name	:	Project Work

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination				
Course	Hours Hours						
eeulee	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total	Duration	
Project Work	6	90	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

The student takes up a project (Either a case study or dissertation type) in consultation with staff members from SIT and paper mill personnel. He collects necessary literature and records data by conducting experiments whenever necessary and tabulates results and arrives at a conclusion.

OBJECTIVES:

- To develop the creative talents in the students.
- The project work should involve less cost, easy manufacturing technique and suitable to the real life situations.
- The project work should be useful to the mankind.
- To give the students a taste of real life problem solving and thus simulate industrial environment within the polytechnic.
- To develop those abilities that cannot be developed by normal class room situations such as group work, sharing responsibility, initiate, creativity etc.

Course Outcomes:

	Course outcome	BTL
CO1	Applying the Theoretical knowledge studied in paper technology	R
CO2	Applying the Practical knowledge observed in Inplant training	Α
CO3	Understanding the bottleneck situation in paper industry	Α

Mapping Course Outcomes (CO) - Program Outcomes (PO)

СО	Program Outcomes (PO)						Program Specific Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation	Correlation								
Strong – S / 3			Mediu	m – M /	2		Weak	< – W / 1	

Lab Assessment									
SI.	Rubrics (Sample)		Marks						
No.		High 5-4	Medium 3-2	Low 1-0					
Conduction of experiment (Software)									
1.	Coding Skill	Show excellent	Show minimal	Show no					
		understanding of	understanding of	understanding of					
		the logic. The code	the logic. But the	the logic and					
		is correct with	code has several	unable to write					
		regard to syntax.	syntax errors	the code					
2.	Simulation steps /	All the steps are	Some steps are	Steps are not					
	Debugging capacity	followed correct	followed but error	followed . Not					
		sequence. Knows	occurred.	showing interest					
		how to debug the	Debugged the	to debug the					
		error	error with the	error.					
			guidance.						
3.	Presentation of	Complete and	Complete and	Incomplete					
	results	accurate results,	neatly presented,	results, Major					
		Neatly presented	Minor mistakes	mistakes					
4	Viva	Almost all the	Partially	Unable to					
		questions are	answered	answer					
		answered.							
5	Promptness	The experiment is	The experiment	The experiment is					
		completed on time.	is completed on	not completed on					
		Observation/Record	time but the	time. Observation					
		note is submitted	Observation /	/ Record note is					
		on time .	Record note is	not submitted					
			not submitted on	ontime.					
			time.						
	Mark Allocation	25-20	15-10	5-0					

	5F6312 - Process Design & Simulation Practical						
Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY					
Course Code	:	5F 6312					
Term	:	VI					
Course Name	:	Process Design & Simulation Practical					

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination				
Course	Hours Hours / Week / Term						
			Internal Assessment			Duration	
Process Design							
& Simulation	4	64	25	100*	100	3 Hrs.	
Practical							

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

In Diploma level engineering education skill development plays a vital role. These can be achieved by experience in handling various equipments. This is accomplished by doing paper manufacturing related experiments in practical classes.

OBJECTIVES:

After completion of this practical, the student should be able to construct

- Able to handle various unit operation and plant at different condition of process variable using simulator.
- Need of simulator- Application of simulators distributed controlled system-Dynamic Graphic (mimic), Bar graph- Trend and Alarm

Course Outcomes:

	Course outcome	BTL
CO1	Analyze salt cake, soda ash, Green liquor, White liquor	R
CO2	Determine the available calcium oxide in lime	Α
CO3	Determine the amount of Total hardness Total solids, chlorides and total alkalinity in water	Α
CO4	Analysis of smelt to determine reduction efficiency	Α
CO5	Determine the purity of caustic soda	U

со		Program Outcomes (PO)					Program Specific Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PSO1	PSO2
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation	Correlation								
Strong – S / 3	Medium – M /2 Weak – W / 1								

Mapping Course Outcomes (CO) - Program Outcomes (PO)

DETAILED SYLLABUS

Contents: Practical **Name of the Topics:**

Exercise

- 1. Production calculation
- 2. Material Balance Paper machine, Stock preparation
- 3. Material Balance Pulp mill
- 4. Drying section, No of Dryers, Area of contact, Angle of wrap
- 5. Consistency of Pulp at various stages in Wire part and there effects.
- 6. Wire length &width, Dandy roll
- 7. Headbox Capacity, Fanpump, pipe size
- 8. Disc refiner, Centri cleaner & Screening
- 9. Deinking (Flotation cell) & Low consistency Pulper
- 10. Digestor, Brown stock washer, Bleaching

Experiment Plan:

Module	Week	Experimente Nome	Course	Weightage
No. No.		Experiments Name	Outcome	
1	3	Production calculation,		
2	4	Material Balance – Paper machine,		
2	-	Stock preparation		
3	5	Material Balance – Pulp mill		
4	6	Drying section, No of Dryers, Area of		
	0	contact, Angle of wrap		
5	7	Consistency of Pulp at various stages		
5	ľ	in Wire part and there effects.		
6	8	Wire length &width, Dandy roll		
7	9	Headbox – Capacity, Fanpump, pipe		
,	5	size		
8	10	Disc refiner, Centri – cleaner &		
Ū	10	Screening		
9	11	Deinking (Flotation cell) & Low		
Ŭ		consistency Pulper		
10	12	Digestor, Brown stock washer,		
	12	Bleaching		

Lab Assessment

SI.			Marks	
No.	Rubrics (Sample)	High 5-4	Medium 3-2	Low 1-0
		Conduction of ex	periment	
1.	Chemical Handling	Proper , Safest way of Chemical Handling & Usage of PPE Minimum usage of Proper , Safest way to Chemical Handling & Usage of PPE		Safe less & Easiest way of Chemical Handling without using PPE
2.	Accuracy of titration Results	All the steps are followed correct sequence of Chemical addition & The speed of titration	Some steps are followed correct sequence of Chemical addition & The speed of titration	Steps are not followed to sequence of Chemical addition & The speed of titration
3.	Presentation of results	Accurate results & Calculation. Neatly presented	Complete and neatly presented, Minor mistakes in Result & Calculation	Incomplete results, Mistakes in Calculation Sequence
4	Viva	Almost all the questions are answered.	Partially answered	Unable to answer.
5	Promptness	The experiment is Completed on time. Observation/Record note is submitted on time	The experiment is completed on time but the Observation / Record note is not submitted on time.	The experiment is not completed on time. Observation / Record note is not submitted on time.
	Mark Allocation	35 - 25	25 - 10	10 - 0

5F7312 - Control Laboratory Utilities & Instrumentation

Programme Name	:	DIPLOMA IN PAPER TECHNOLOGY
Course Code	:	5F7312
Term	:	VII
Course Name	:	Control Laboratory Utilities & Instrumentation

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination					
Course	Hours	Hours						
	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total	Duration		
Control		576	25	100*	100	3 Hrs.		
Laboratory	24							
Utilities &				100				
Instrumentation								

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

Most of pulp and paper mill operations will involve mechanical and electrical operation. Therefore it is extremely necessary to have good understanding about the unit process as well as unit operation. These methods can be used for understanding the performance of the papermaking unit using process instrumentation & control equipment. With the help of control laboratory to maintain the quality as well as quantity of product

OBJECTIVES

At the end of this course, students will be able to

- Understand how the physical parameters of the processes (Temperature, Pressure, Liquid level, Flow rate etc. are measured & controlled in paper industries and they would acquire hands on experience of measurement and control of chemical process parameters. After completion of this laboratory, they will be aware of computer control of process variables and the probable causes and effect of instrument failure.
- Water and energy consumption in paper mill
 - As soon as the inplant training is over the students will able to know
 - Various control over process
 - Knowledge about various boilers
 - Knowledge about automatic control valves, Distributed control system operations etc.

Course Outcomes:

	Course outcome	BTL
CO1	Understand the physical parameters & equipments used in Laboratory	R
CO2	Aware of computer control of process variables and the probable causes and effect of instrument failure	Α
CO3	Know about the Water and energy consumption in paper mill	Α
CO4	Knowledge about automatic control valves, Distributed control system operations	Α
CO5	Understand the physical parameters & equipments used in Labaratory	U

со		Pı	ogram	Outco	mes (P	Program Specific Outcomes (PSO)				
	PO1	PO2	PO3	PSO1	PSO2					
CO1										
CO2										
CO3										
CO4										
CO5										
TOTAL										
No. of COs Mapping with POs										
Average										
Round off(Average)										
Correlation										
Strong – S / 3			Medium – M /2 Wea					ak – W / 1		

Mapping Course Outcomes (CO) - Program Outcomes (PO)

5F 7313- Paper Making Operation & Mechanical Maintenance Programme Name : DIPLOMA IN PAPER TECHNOLOGY Course Code : 5F 7313 Term : VII Course Name : Paper Making Operation & Mechanical Maintenance

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ctions	Examination					
Course	Hours	Hours						
	/ Week	/ Term	Internal Assessment	Autonomous Examination	Total	Duration		
Paper Making		576	25	100*	100	3 Hrs.		
Operation &	24							
Mechanical				100				
Maintenance								

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

After in plant training the students known's about how the paper is made from raw material. They have through knowledge of papermaking sheet forming, pressing, drying and calendaring etc.

OBJECTIVE

At the end of this course, students will be able to

- > Know the process of the paper machine
- > Know the procedure to operate equipment and handling techniques
- > Know the operating procedure including the start-up and shut down procedure
- > Know the variables affecting efficiencies, production rate
- > Know the unit operations and their electrical and mechanical maintenance
- Know the paper making common problems and trouble shooting, operational parameters and controls, quality control on paper machine

At the end of the in plant training

- > Hands on experience in paper making machine
- > Knowledge about good run ability of paper machine
- > Knowledge about required moisture at various places
- Idea about paper production & troubleshooting knowledge

Course Outcomes:

	Course outcome							
CO1	Know the procedure to operate equipment and handling techniques & process of the paper machine	R						
CO2	Know the variables affecting efficiencies, production rate	R						
CO3	Understand the common problems and trouble shooting, operational	U						
CO4	Understand the Parameters and controls, quality control on paper machine	U						
CO5	Have hands on experience in paper making machine	Α						

со		Pı	rogram	Outco	Program Specific Outcomes (PSO)				
	PO1	PO2	PSO1	PSO2					
CO1									
CO2									
CO3									
CO4									
CO5									
TOTAL									
No. of COs Mapping with POs									
Average									
Round off(Average)									
Correlation									
Strong – S / 3		Medium – M /2 Weak					- W / 1		

Mapping Course Outcomes (CO) - Program Outcomes (PO)